Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-9th95 Total loading time: 0.46 Render date: 2022-12-04T05:26:33.067Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

AUV Bathymetric Simultaneous Localisation and Mapping Using Graph Method

Published online by Cambridge University Press:  05 July 2019

Teng Ma*
Affiliation:
(Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China)
Ye Li
Affiliation:
(Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China)
Yusen Gong
Affiliation:
(Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China)
Rupeng Wang
Affiliation:
(Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China)
Mingwei Sheng
Affiliation:
(Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China)
Qiang Zhang
Affiliation:
(Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China)
*

Abstract

Although topographic mapping missions and geological surveys carried out by Autonomous Underwater Vehicles (AUVs) are becoming increasingly prevalent, the lack of precise navigation in these scenarios still limits their application. This paper deals with the problems of long-term underwater navigation for AUVs and provides new mapping techniques by developing a Bathymetric Simultaneous Localisation And Mapping (BSLAM) method based on graph SLAM technology. To considerably reduce the calculation cost, the trajectory of the AUV is divided into various submaps based on Differences of Normals (DoN). Loop closures between submaps are obtained by terrain matching; meanwhile, maximum likelihood terrain estimation is also introduced to build weak data association within the submap. Assisted by one weight voting method for loop closures, the global and local trajectory corrections work together to provide an accurate navigation solution for AUVs with weak data association and inaccurate loop closures. The viability, accuracy and real-time performance of the proposed algorithm are verified with data collected onboard, including an 8 km planned track recorded at a speed of 4 knots in Qingdao, China.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ånonsen, K. B., Hagen, O. K., Hegrenæs, Ø. and Hagen, P. (2013). The HUGIN AUV Terrain Navigation Module. MTS/IEEE OCEANS - San Diego, San Diego, CA, 1–8.Google Scholar
Barkby, S., Williams, S., Pizarro, O. and Jakuba, M. (2009). An efficient approach to bathymetric SLAM. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, 219–224.CrossRefGoogle Scholar
Barkby, S., Williams, S. B., Pizarro, O. and Jakuba, M. V. (2012). Bathymetric Particle Filter SLAM Using Trajectory Maps. International Journal of Robotics Research, 31(12), 14091430.CrossRefGoogle Scholar
Chen, P. (2016). Study on Seabed Terrain Matching Navigation with Multi-Senor for AUV. Ph.D. dissertation, Harbin Engineering University. (in Chinese)Google Scholar
Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing. International Journal of Robotics Research, 25(12), 11811204.CrossRefGoogle Scholar
Doble, M. J., Forrest, A. L., Wadhams, P. and Laval, B.E. (2009). Through-ice AUV Deployment: Operational and Technical Experience from Two Seasons of Arctic Fieldwork. Cold Regions Science & Technology, 56(2–3), 9097.CrossRefGoogle Scholar
Donovan, G. T. (2012). Position Error Correction for an Autonomous Underwater Vehicle Inertial Navigation System (INS) Using a Particle Filter. IEEE Journal of Oceanic Engineering, 37(3), 431445.CrossRefGoogle Scholar
Durrant-whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part I. IEEE Robotics & Automation Magazine, 13(3), 108117.CrossRefGoogle Scholar
Feng, Q. T. (2004). The Research on New Terrain Elevation Matching Approaches and Their Applicability. Ph.D. dissertation, Nation University of Defense Technology. (in Chinese)Google Scholar
Hagen, O. K. and Ånonsen, K. B. (2014). Using Terrain Navigation to Improve Marine Vessel Navigation Systems. Marine Technology Society Journal, 48(2), 4558(14).CrossRefGoogle Scholar
Hurtós, N., Ribas, D., Cufí, X., Petillot, Y. and Salvi, J. (2015). Fourier-based Registration for Robust Forward-looking Sonar Mosaicing in Low-visibility Underwater Environments. Journal of Field Robotics, 32(1), 123151.CrossRefGoogle Scholar
Ila, V., Polok, L., Solony, M. and Svoboda, P. (2017). SLAM++ -A highly efficient and temporally scalable incremental SLAM framework. International Journal of Robotics Research, 36(3), 210230.CrossRefGoogle Scholar
Johannsson, H., Kaess, M., Englot, B., Hover, F. and Leonard, J. (2010). Imaging sonar-aided navigation for autonomous underwater harbor surveillance. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan.CrossRefGoogle Scholar
Kaess, M., Ranganathan, A. and Dellaert, F. (2008). iSAM: Incremental Smoothing and Mapping. IEEE Transactions on Robotics, 24(6), 13651378.CrossRefGoogle Scholar
Kim, A. and Eustice, R. M. (2013). Real-Time Visual SLAM for Autonomous Underwater Hull Inspection Using Visual Saliency. IEEE Transactions on Robotics, 29(3), 719733.CrossRefGoogle Scholar
Kownacki, C. (2016). A concept of laser scanner designed to realize 3D obstacle avoidance for a fixed-wing UAV. Robotica, 34(2):243257.CrossRefGoogle Scholar
Li, Y., Ma, T., Wang, R., Chen, P. and Zhang, Q. (2017). Correction Method for AUV Seabed Terrain Mapping. Journal of Navigation, 70, 10621078.CrossRefGoogle Scholar
Mallios, A., Ridao, P., Ribas, D. and Hernández, E. (2014). Scan Matching SLAM in Underwater Environments. Autonomous Robots, 36(3), 181198.CrossRefGoogle Scholar
Nygren, I. and Jansson, M. (2004). Terrain Navigation for Underwater Vehicles Using the Correlator Method. IEEE Journal of Oceanic Engineering, 29(3), 906915.CrossRefGoogle Scholar
Nygren, I. (2005). Terrain Navigation for Underwater Vehicles. Ph.D. dissertation, Royal Institute of Technology.Google Scholar
Palomer, A., Ridao, P., Ribas, D., Mallios, A., Gracias, N. and Vallicrosa, G. (2013). Bathymetry-based SLAM with Difference of Normals Point-cloud Subsampling and Probabilistic ICP Registration. MTS/IEEE OCEANS - Bergen, Bergen, Norway, 1–7.CrossRefGoogle Scholar
Palomer, A., Ridao, P., Romagós, D. R. and Vallicrosa, G. (2015). Multi-beam Terrain/Object Classification for Underwater Navigation Correction. MTS/IEEE OCEANS – Genova, Genova, Spain, 1–5.CrossRefGoogle Scholar
Palomer, A., Ridao, P. and Ribas, D. (2016). Multibeam 3D Underwater SLAM with Probabilistic Registration. Sensors, 16, 560.CrossRefGoogle ScholarPubMed
Paull, L., Saeedi, S., Seto, M. and Li, H. (2014). AUV Navigation and Localization: A Review. IEEE Journal of Oceanic Engineering, 39, 131149.CrossRefGoogle Scholar
Ribas, D., Ridao, P., Tardós, J. D. and Neira, J. (2008). Underwater SLAM in Man-made Structured Environments. Journal of Field Robotics, 25 (11–12), 898921.CrossRefGoogle Scholar
Roman, C. and Singh, H. (2010). A Self-Consistent Bathymetric Mapping Algorithm. Journal of Field Robotics, 24 (1–2), 2350.CrossRefGoogle Scholar
Rosen, D. M., Kaess, M. and Leonard, J. J. (2012). An incremental trust-region method for Robust online sparse least-squares estimation, 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, 1262–1269.CrossRefGoogle Scholar
Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press, Inc.Google Scholar
Stuckey, R. A. (2012). Navigational Error Reduction of Underwater Vehicles with Selective Bathymetric SLAM. Navigation Guidance & Control of Underwater Vehicles, 45(5), 118125.Google Scholar
Wang, N., Lv, S., Zhang, W., Liu, Z. and Er, M. J. (2017a). Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns. Ocean Engineering, 145, 406415.CrossRefGoogle Scholar
Wang, N., Su, S. F., Yin, J., Zheng, Z. and Meng, J. E. (2017b). Global Asymptotic Model-Free Trajectory-Independent Tracking Control of an Uncertain Marine Vehicle: An Adaptive Universe-Based Fuzzy Control Approach. IEEE Transactions on Fuzzy Systems, DOI:10.1109/TFUZZ.2017.2737405.Google Scholar
Zhou, L., Cheng, X., Zhu, Y., Dai, C. and Fu, J. (2017). An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles. Sensors, 17, 680.CrossRefGoogle ScholarPubMed
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

AUV Bathymetric Simultaneous Localisation and Mapping Using Graph Method
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

AUV Bathymetric Simultaneous Localisation and Mapping Using Graph Method
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

AUV Bathymetric Simultaneous Localisation and Mapping Using Graph Method
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *