Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-t7hbd Total loading time: 0.207 Render date: 2022-05-19T18:05:55.730Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Use of Simple Model to Predict the Forced Vibration Responses of Hualien Model Structure

Published online by Cambridge University Press:  05 May 2011

Cheng-Hsing Chen*
Affiliation:
Department of Civil Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
Shuh-Hua Yang*
Affiliation:
Department of Civil Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
*
*Professor
**Graduate student
Get access

Abstract

This paper uses a simple model, the lumped single-degree-of-freedom system on rigid mat foundation, to investigate the effects of soil-structure interaction on the dynamic response of a soil-structure system. Based on that, the key parameters affecting the natural frequency of a soil-structure system can be easily identified and be used to assess the effects of soil-structure interaction. Accordingly, it was used to simulate the dynamic response of the forced vibration tests conducted at Hualien, Taiwan. Results obtained show that the simple model can predict the field responses very satisfactorily.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wong, H. L. and Luco, J. E., “Dynamic Response of Rigid Foundation of Arbitrary Shape,” Earthquake Engineering and Structural Dynamics, 4, pp. 576587 (1976).CrossRefGoogle Scholar
2.Lysmer, J., Tabatabaie, M., Tajirian, F., Vahdani, S. and Ostadan, F., “SASSI - A System for Analysis of Soil-Structure Interaction,” Report UCB/GT/81–02, University of California, Berkeley, CA (1981).Google Scholar
3.Lysmer, J., Utaka, T., Tsai, C. F. and Seed, H. B., “FLUSH - A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problem,” Report EERC-75–30, University of California, Berkeley, CA (1975).Google Scholar
4.Gupta, S., Penzien, J., Lin, T. W. and Yeh, C. S., “Three-Dimensional Hybrid Modelling of Soil-Structure Interaction,” Earthquake Engineering and Structural Dynamics, 10, pp. 6987 (1982).CrossRefGoogle Scholar
5.Miller, C. A. and Costantino, C. J.“Soil-Structure Interaction Methods: SIM Code,” NUREG/CR-1717, III, Brookhaven National Lab., New York (1979).CrossRefGoogle Scholar
6.Wolf, J. P., Dynamic Soil-Structure Interaction, Prentice-Hall, Englewood Cliffs, NJ (1985).Google Scholar
7.Clough, R. W. and Penzien, J., Dynamics of Structures, 2nd edn, McGraw-Hill, NY (1993).Google Scholar
8.Velets, A. S. and Wei, Y. T.“Lateral and Rocking Vibrations of Footings,” J. Soil Mech. and Found. Eng. Div., ASCE, 97, pp. 12271248 (1971).Google Scholar
9.Luco, J. F. and Westman, R. A., “Dynamic Response of Circular Footings,” J. Eng Mech. Div., ASCE, 97, pp. 13811395 (1971).Google Scholar
10.Day, S. M., “Finite Element Analysis of Seismic Scattering Problems,” Ph.D. Dissertation, University of California, San Diego, CA (1977).Google Scholar
11.Tang, H. T. et al. , “The Hualien Large-Scale Seismic Test for Soil-Structure Interaction Research,” Trans, of the 11th SMiRT, Tokyo, Japan, K04/4 (1991).Google Scholar
12. TEPCO, “Hualien LSST Project, Status Report of the Forced Vibration Test Results (Before Backfill),” Tokyo Electric Power Co., Tokyo, Japan (1993a).Google Scholar
13. CRIEPI, “The Unified Model of the Ground for FVT-1 Analysis,” Report, Central Research Institute of Electric Power Industry, Tokyo, Japan (1993).Google Scholar
14. TEPCO. “Hualien LSST Project, Status Report of the Forced Vibration Test Results (after Backfill),” Tokyo Electric Power Co., Tokyo, Japan (1993b).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Use of Simple Model to Predict the Forced Vibration Responses of Hualien Model Structure
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Use of Simple Model to Predict the Forced Vibration Responses of Hualien Model Structure
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Use of Simple Model to Predict the Forced Vibration Responses of Hualien Model Structure
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *