Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-s5lbf Total loading time: 0.264 Render date: 2022-06-27T07:09:58.497Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Some Nonlinear Features of the Squeeze-Film Problem

Published online by Cambridge University Press:  05 May 2011

U. Lei*
Affiliation:
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
Chia-Han Chen*
Affiliation:
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
*
*Professor
**Graduate student
Get access

Abstract

The nonlinear features of the squeeze-film problem between two parallel long strips driven by the relative harmonic oscillation of the strips is studied via the regular perturbation and numerical calculation for ∈ < 1 and σ = O(1)- O(103), where ∈ is the dimensionless amplitude of the oscillation, and σ is the squeeze number. The fluid film behaves as a (nonlinear) spring for large σ and as a (nonlinear) damper for small σ, which are qualitatively similar to the linear analysis. However, a steady state force is generated even though the driving mechanism is purely oscillatory due to the nonlinear effect. Furthermore, the dimensionless quasi-steady rate of energy dissipation within one cycle of the plate oscillation, E, is not zero (zero for linear analysis), and is maximized at σ ≈ 10. Also the rate of increase of E with ∈ is greater than ∈2. The present study may be helpful for the design of some accelerometers and vibration absorbers.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Griffin, W. S., Richardson, H. H. and Yamanami, S., “A Study of Fluid Squeeze-Film Damping,” ASME J. Basic Eng., Vol. 88, pp. 451456 (1966).CrossRefGoogle Scholar
2.Blech, J. J., “On Isothermal Squeeze Films,” ASME J. Lubrication Tech., Vol. 105, pp. 615620 (1983):CrossRefGoogle Scholar
3.Andrews, M., Harris, I. and Turner, G., “A Comparison of Squeeze-Film Theory with Measurements on a Microstructure,” Sensors and Actuators A, Vol. 36, pp. 7987 (1993).CrossRefGoogle Scholar
4.Gross, W. A., Gas Film Lubrication, John Wiley & Sons, New York (1962).Google Scholar
5.Batchelor, G. K., “An Introduction to Fluid Dynamics,” Cambridge Univ. Press, Cambridge, pp. 353364 (1967).Google Scholar
6.Chen, Chia-Han, “Study of the Squeeze-Film Problem,” Master Thesis, National Taiwan University (1999).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Some Nonlinear Features of the Squeeze-Film Problem
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Some Nonlinear Features of the Squeeze-Film Problem
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Some Nonlinear Features of the Squeeze-Film Problem
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *