Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-bntjx Total loading time: 0.273 Render date: 2021-05-15T06:11:13.614Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Dual Fuel Turbocharged Engine Operated with Exhaust Gas Recirculation

Published online by Cambridge University Press:  12 May 2016

H.-W. Wu
Affiliation:
Department of System and Naval Mechatronic Engineering National Cheng Kung University Tainan, Taiwan
T.-Z. Hsu
Affiliation:
Department of System and Naval Mechatronic Engineering National Cheng Kung University Tainan, Taiwan
W.-H. Lai
Affiliation:
Department of Aeronautics and Astronautics National Cheng Kung University Tainan, Taiwan
Corresponding
Get access

Abstract

With good combustion characteristics, hydrogen has been developing as a clean alternative fuel of engines. This study is to develop a diesel/hydrogen dual fuel engine. The hydrogen was added at inlet port in a 4-cylinder direct injection turbocharged diesel engine with an EGR (Exhaust Gas Recirculation) system to investigate engine performance and exhaust pollutant. The measured items are composed of the gas pressure of cylinder, crank angle, consumption rate of diesel, consumption rate of hydrogen, air flow rate, emissions (HC, CO2, NOX, and Smoke), and so on. The authors analyze how the addition of hydrogen with EGR system influences the engine performance and emissions. The diesel/hydrogen dual fuel turbocharged engine can increase the brake thermal efficiency with a greater decrease in emissions compared with the turbocharged diesel engine. Furthermore, the authors little altered the engine structure to get the positive effect of energy saving and pollutant decreasing.

Type
Research Article
Copyright
Copyright © The Society of Theoretical and Applied Mechanics 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, Maiden Head, England (1988).Google Scholar
2. Ma, F., Wang, Y., Liu, H., Li, Y., Wang, J. J. and Ding, S. F., “Effects of Hydrogen Addition on Cycle-by-Cycle Variation in a Learn Burn Natural Gas Spark-Ignition Engine,” International Journal of Hydrogen Energy, 33, pp. 391402 (2008).Google Scholar
3. Saravanan, N., Nagarajan, G., Dhanasekaran, C. and Kalaiselvan, K. M., “Experimental Investigation of Hydrogen Port Fuel Injection in Di Diesel Engine,” International Journal of Hydrogen Energy, 32, pp. 40714080 (2007).CrossRefGoogle Scholar
4. Tomita, E., Kawahara, N., Piao, Z. and Fujita, S., “Hydrogen Combustion and Exhaust Emissions Ignited with Diesel Oil in a Dual Fuel Engine,” SAE (Society of Automotive Engineers) TECH Paper, Doi:10.4271/2001-01-3503 (2001).CrossRefGoogle Scholar
5. White, C. M., Steeper, R. R. and Lutz, A. E., “The Hydrogen-Fueled Internal Combustion Engine: A Technical Review,” International Journal of Hydrogen Energy, 31, pp. 12921305 (2006).CrossRefGoogle Scholar
6. Rakopoulos, C. D., Scotta, M. A., Kyritsisa, D. C. and Giakoumis, E. G., “Avability Analysis of Hydrogen/ Natural Gas Blends Combustion in Internal Combustion Engines,” Energy, 33, pp. 20432056 (2008).CrossRefGoogle Scholar
7. Mohammadi, A., Shioji, M., Nakai, Y., Ishikura, W. and Tabo, E., “Performance and Combustion Characteristics of a Direct Injection Si Hydrogen Engine,” International Journal of Hydrogen Energy, 32, pp. 296304 (2007).CrossRefGoogle Scholar
8. Saravanan, N. and Nagarajan, G., “Experimental Investigation on a Di Dual Fuel Engine with Hydrogen Injection,” International Journal of Energy Research, 33, pp. 295308 (2009).CrossRefGoogle Scholar
9. Heffel, J. W., “NOX Emission Reduction in a Hydrogen Fueled Internal Combustion Engine at 3000 Rpm Using Exhaust Gas Recirculation,” International Journal of Hydrogen Energy, 28, pp. 12851292 (2003).CrossRefGoogle Scholar
10. Chou, Y. S., Song, S. H. and Chun, K. M., “H2 Effects on Diesel Combustion and Emissions with LPL-EGR System,” International Journal of Hydrogen Energy, 38, pp. 98979906 (2013).CrossRefGoogle Scholar
11. Ferguson, C. R., Internal Combustion Engine Fundamentals: Applied Thermosciences, John Wiley & Sons Inc., Liverpool (1986).Google Scholar
12. Shudo, T. and Suzuki, H., “Applicability of Heat Transfer Equations to Hydrogen Combustion,” JSAE Review, 233, pp. 303308 (2002).CrossRefGoogle Scholar
13. Abernethy, R. B., Benedict, R. B. and Dowdell, R. P., “ASME Measurement Uncertainty,” Journal of Fluids Engineering, 107, pp. 161164 (1985).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dual Fuel Turbocharged Engine Operated with Exhaust Gas Recirculation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dual Fuel Turbocharged Engine Operated with Exhaust Gas Recirculation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dual Fuel Turbocharged Engine Operated with Exhaust Gas Recirculation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *