Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-t6r6x Total loading time: 0.235 Render date: 2022-07-03T06:35:02.715Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

An Overall Approach for Microcrack and Inhomogeneity Toughening in Brittle Solids

Published online by Cambridge University Press:  05 May 2011

Huang Hsing Pan*
Affiliation:
Department of Civil Engineering, National Kaohsiung Institute of Technology, Kaohsiung, Taiwan 807, R.O.C
*
*Associate Professor
Get access

Abstract

Based on the weight function theory and Hutchinson's technique, the analytic form of the toughness change near a crack-tip is derived. The inhomogeneity toughening is treated as an average quantity calculated from the mean-field approach. The solutions are suitable for the composite materials with moderate concentration as compared with Hutchinson's lowest order formula. The composite has the more toughened property if the matrix owns the higher value of the Poisson ratio. The composite with thin-disc inclusions obtains the highest toughening and that with spheres always provides the least effective one. For the microcrack toughening, the variations of the crack shape do not significantly affect the toughness change if the Budiansky and O'Connell crack density parameter is used. The explicit forms for three types of the void toughening and two types of the microcrack toughening are also shown.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

l.Becher, P. F. and Tiegs, T. N., “Toughening Behavior Involving Multiple Mechanisms: Whisker Reinforcement and Zirconia Toughening,” J. American Ceramics Soc, Vol. 70, No. 9, pp. 651654(1987).CrossRefGoogle Scholar
2.Ruhle, M., Claussen, N. and Heuer, A. H., “Transformation and Microcrack Toughening as Complementary Processes in ZTA,” J. American Ceramics Soc, Vol. 69, No. 3, pp. 195197 (1986).CrossRefGoogle Scholar
3.Ruhle, M., Evans, A. G., McMeeking, R. M., Charalambides, P. G. and Hutchinson, J. W., “Microcrack Toughening in Alumina/Zirconia,” Acta Metallurgical Vol. 35, No. 11, pp. 27012710 (1987).CrossRefGoogle Scholar
4.Charalambides, P. G. and McMeeking, R. M.,“Near-Tip Mechanics of Stress-Induced Microcracking in Brittle Materials,” J. American Ceramics Soc, Vol. 71, No. 6, pp. 465472 (1988).CrossRefGoogle Scholar
5.Dolgopolsky, A., Karbhari, V. and Kwak, S. S., “Microcrack Induced Toughening—An Interaction Model,” Acta Metallurgica, Vol. 37, No. 5, pp. 13491354 (1989).CrossRefGoogle Scholar
6.Evans, A. G. and Faber, K. T., “Crack-Growth Resistance of Microcracking Brittle Materials,” J. American Ceramics Soc, Vol. 67, No. 4, pp. 255260(1984).CrossRefGoogle Scholar
7.Evans, A. G. and Fu, Y., “Some Effects of Microcracks on the Mechanical Properties of Brittle Solids—II. Microcrack Toughening,” Acta Metallurgical Vol. 33, pp. 15251531 (1985).CrossRefGoogle Scholar
8.Fu, Y. and Evans, A. G., “Some Effects of Microcracks on the Mechanical Properties of Brittle Solids—I. Strain Relation,” Acta Metallurgica, Vol. 33, No. 8, pp. 15151523 (1985).CrossRefGoogle Scholar
9.Hoagland, R. G. and Embury, J. D., “A Treatment of Inelastic Deformation Around a Crack Tip due to Microcracking,” J. American Ceramics Soc, Vol. 63, No. 7–8, pp. 404410 (1980).CrossRefGoogle Scholar
10.Rose, L. R. F., “Effective Fracture Toughness of Microcracked Materials,” J. American Ceramics Soc, Vol. 69, No. 3, pp. 212214 (1986).CrossRefGoogle Scholar
11.Charalambides, P. G. and McMeeking, R. M., “Finite Element Method Simulation of Crack Propagation in a Brittle Microcracking Solid,” Mech. Mater., Vol. 6, pp. 7187 (1987).CrossRefGoogle Scholar
12.Hutchinson, J. W., “Crack Tip Shielding by Micro-Cracking in Brittle Solids,” Acta Metallurgica, Vol.35, No. 7, pp. 16051619 (1987).CrossRefGoogle Scholar
13.Curtin, W. A. and Futamura, K., “Microcrack Toughening?” Acta Metallurgica and Materials, Vol.38, No. 11, pp. 20512058 (1990).CrossRefGoogle Scholar
14.Mura, T., Micromechanics of Defects in Solids, 2nd Edn, Martinus Nijhoff, Dordrecht (1987).Google Scholar
15.Mori, T. and Tanaka, K., “Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,” Acta Metallurgica, Vol. 21, pp. 571574(1973).CrossRefGoogle Scholar
16.Weng, G. J., “Some Elastic Properties of Reinforced Solids, with Special Reference to Isotropic Ones Containing Spherical Inclusion,” Int. J. Eng. Sci., Vol. 22, pp. 845856(1984).CrossRefGoogle Scholar
17.Pan, H. H. and Weng, G. J., “Elastic Moduli of Heterogeneous Solids with Ellipsoidal Inclusions and Elliptic Cracks,” Acta Mechanica, Vol. 110, pp. 7394 (1995).CrossRefGoogle Scholar
18.Bueckner, H. F., “A Novel Principle for the Computation of Stress Intensity Factors, Z. Angew. Math. Mech., Vol. 50, pp. 529546 (1970).Google Scholar
19.Rice, J. R., “Some Remark on Elastic Crack-Tip Stress Fields,” Int. J. Solids Structures, Vol. 8, pp. 751758(1972).CrossRefGoogle Scholar
20.Rice, J. R., “Weight Function Theory for Three-Dimensional Elastic Crack Analysis,” Fracture Mech., ASTM STP 1020, pp. 2957 (1989).Google Scholar
21.Eshelby, J. D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Relation Problem,” Proc. Roy. Soc London Ser., A 241, pp. 376396(1957).CrossRefGoogle Scholar
22.Tandon, G. P. and Weng, G. J., “The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites,” Polymer Comp., Vol. 5, pp. 327333 (1984).CrossRefGoogle Scholar
23.Tandon, G. P. and Weng, G. J., “Average Stress in the Matrix and Effective Moduli of Randomly Oriented Composites,” Comp. Sci. Tech., Vol. 27, pp. 111132(1986).CrossRefGoogle Scholar
24.McMeeking, R. M. and Evans, A. G., “Mechanics of Transformation-Toughening in Brittle Materials,” J. American Ceramics Soc, Vol. 65, No. 5, pp. 242246(1982).CrossRefGoogle Scholar
25.Paris, P. C., McMeeking, R. M. and Tada, H., “The Weight Function Method for Determining Stress Intensity Factors,” Cracks and Fracture, ASTM STP 601, pp. 471489 (1976).CrossRefGoogle Scholar
26.Rice, J. R., “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” J. Appl. Mech., pp. 379386 (1968).CrossRefGoogle Scholar
27.Ortiz, M., “A Continuous Theory of Crack Shielding in Ceramics,” J. Appl. Mech., Vol. 54, pp. 5448(1987).CrossRefGoogle Scholar
28.Budiansky, B. and O'Connell, R. J., “Elastic Moduli of a Cracked Solids,” Int. J. Solids Structures, Vol. 12, pp. 8197(1976).CrossRefGoogle Scholar
29.Steif, P. S., “A Semi-Infinite Crack Partially Penetrating a Circular Inclusion,” J. Appl. Mech., Vol. 54, pp. 8792(1987).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An Overall Approach for Microcrack and Inhomogeneity Toughening in Brittle Solids
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

An Overall Approach for Microcrack and Inhomogeneity Toughening in Brittle Solids
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

An Overall Approach for Microcrack and Inhomogeneity Toughening in Brittle Solids
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *