Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T19:30:11.756Z Has data issue: false hasContentIssue false

Understanding phase equilibria and segregation in Bridgman growth of Cs2LiYCl6 scintillator

Published online by Cambridge University Press:  22 May 2017

Francesco L. Ruta*
Affiliation:
Materials Science & Engineering, Stanford University, Stanford, California 94305
Stacy Swider
Affiliation:
CapeSym, Inc., Natick, Massachusetts 01760
Stephanie Lam
Affiliation:
CapeSym, Inc., Natick, Massachusetts 01760
Robert S. Feigelson
Affiliation:
Materials Science & Engineering, Stanford University, Stanford, California 94305
*
a) Address all correspondence to this author. e-mail: flruta@stanford.edu
Get access

Abstract

Cs2LiYCl6 (CLYC) is a commercial scintillator material having good energy resolution and dual gamma/neutron detection capabilities. CLYC crystals currently used in detectors are grown by the vertical Bridgman method. Boules grown from stoichiometric melts, however, often contain secondary phases, Cs3YCl6 and LiCl, at the beginning and end of the crystal, respectively, suggesting that this composition is incongruently melting. Since no phase diagram containing CLYC existed in the literature prior to this study, the Cs2YCl5–LiCl phase diagram was explored. Several crystals were then grown from various melt compositions. As predicted from the phase diagram, a starting composition of around 60 mol% LiCl did not produce Cs3YCl6 and maintained a low concentration of LiCl.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Scott T. Misture

References

REFERENCES

Combes, C.M., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Godel, H.U.: Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals. J. Lumin. 82, 299 (1999).Google Scholar
van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Güdel, H.U.: Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X = Cl; Br). J. Phys.: Condens. Matter 14, 8481 (2002).Google Scholar
Bessiere, A., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Güdel, H.U.: New thermal neutron scintillators: Cs2LiYCl6:Ce and Cs2LiYBr6:Ce. IEEE Trans. Nucl. Sci. 51, 2970 (2004).Google Scholar
Bessiere, A., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Güdel, H.U.: Luminescence and scintillation properties of Cs2LiYCl6:Ce for gamma and neutron detection. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 242 (2005).Google Scholar
Glodo, J., Hawrami, R., and Shah, K.S.: Development of Cs2LiYCl6 scintillator. J. Cryst. Growth 379, 73 (2013).CrossRefGoogle Scholar
Roush, M.L., Wilson, M.A., and Hornyak, W.F.: Pulse shape discrimination. Nucl. Instrum. Methods 31, 112 (1964).Google Scholar
Higgins, W.M., Glodo, J., Shirwadkar, U., Churilov, A., van Loef, E.V.D., Hawrami, R., Ciampi, G., Hines, C., and Shah, K.S.: Bridgman growth of Cs2LiYCl6:Ce and 6Li-enriched Cs2 6LiYCl6:Ce crystals for high resolution gamma ray and neutron spectrometers. J. Cryst. Growth 312, 1216 (2010).Google Scholar
Lejay, J., Blahuta, S., Ouspenski, V., Menge, P., and Richaud, D.: Large CLYC:Ce and CLLB:Ce Crystals For Gamma-Neutron Detection Systems. Conference poster, http://voss-associates.com/downloads/Large%20CLYC%20and%20CLLB%20crystals%20St.%20Gobain.pdf.Google Scholar
Christensen, A.N.: Crystal growth of incongruently melting compounds. J. Cryst. Growth 62, 320 (1983).Google Scholar
Seifert, H.J. and Büchel, D.: Ternary chlorides in the systems ACl/YCl3 (A = Cs, Rb, K, Na). Z. Anorg. Allg. Chem. 624, 342 (1998).Google Scholar
Sun, Y., Bian, G., Tao, W., Zhai, C., Zhong, M., and Qiao, Z.: Thermodynamic optimization and calculation of the YCl3-ACl (A = Li, Na, K, Rb, Cs) phase diagrams. CALPHAD 39, 1 (2012).Google Scholar
Korreng, E.: The binary system lithium chloride–cesium chloride. Z. Anorg. Allg. Chem. 91, 194 (1915).Google Scholar
Zhao, M., Song, L., and Fan, X.: The Boundary Theory of Phase Diagrams and its Application (Science Press Beijing, Beijing, China, 2009).Google Scholar
Rhines, F.N.: Phase Diagrams in Metallurgy: Their Development and Application, 1st ed. (McGraw-Hill, New York, USA, 1956).Google Scholar
Mackenzie, R.C.: Differential Thermal Analysis, Vol. I, 1st ed. (Academic Press, New York, USA, 1970); pp. 577578.Google Scholar
Alper, A.: Phase Diagrams: Materials Science and Technology, Vol. II (Academic Press, New York, USA, 1970); p. 141.Google Scholar
Swanson, H.E. and Tatge, E.: Standard X-ray diffraction powder patterns. Natl. Bur. Stand. Circ. (U. S.) 539(1), 62 (1953).Google Scholar
Meyer, G., Soose, J., Moritz, A., Vitt, V., and Holljes, Th.: Ternary rare-earth halides of the type A2MX5 (A = K, In, NH4, Rb, Cs; X = Cl, Br, I). Z. Anorg. Allg. Chem. 521, 161 (1985).CrossRefGoogle Scholar
Mattfeld, H. and Meyer, G.: Ternary halides of the A3MX6 type. I. A3YCl6 (A = K, NH4, Rb, Cs): Synthesis, structures, thermal behavior. Some analogous chlorides of the lanthanides. Z. Anorg. Allg. Chem. 618, 13 (1992).Google Scholar
Seifert, H.J.: Ternary chlorides of the trivalent late lanthanides: Phase diagrams, crystal structures and thermodynamic properties. J. Therm. Anal. Calorim. 83, 479 (2006).Google Scholar
Reber, C., Guedel, H.U., Meyer, G., Schleid, T., and Daul, C.A.: Optical, spectroscopic, and structural properties of vanadium(3+)-doped fluoride, chloride, and bromide elpasolite lattices. Inorg. Chem. 28, 3249 (1989).Google Scholar