Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:47:44.223Z Has data issue: false hasContentIssue false

Threading dislocations with edge components in GaN epilayers grown on Al2O3 substrates

Published online by Cambridge University Press:  31 January 2011

Junyong Kang*
Affiliation:
Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
Tomoya Ogawa
Affiliation:
Department of Physics, Gakushuin University, Mejiro, Tokyo 171–8588, Japan
*
a)Address all correspondence to this author.cheng@imr.ac.cn
Get access

Abstract

Two types of threading dislocations with edge components were investigated by a high-resolution transmission electron microscope in undoped GaN epilayers grown on Al2O3 substrates. One is a fully filled core with regular contraction and stretch of bright dots, and the other is incompletely filled with one bright dot less and irregular contraction and stretch of bright dots. The bright dots were distorted and degenerated into bright line segments at cores in areas with smaller local dislocation intervals. The calculated results suggested that the distorted bright regions are attributable to the glide and/or climb caused by nearby dislocation interactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).CrossRefGoogle Scholar
2Akasaki, I., Kozowa, T., Hiramatsu, K., Sawaki, N., Ikeda, K., and Ishii, Y., J. Lumin. 40–41, 121 (1988).Google Scholar
3Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).CrossRefGoogle Scholar
4Qian, W., Skowrongski, M., De Graef, M., Doverspike, K., Rowland, L.B., and Gaskill, D.K., Appl. Phys. Lett. 66, 1252 (1995).CrossRefGoogle Scholar
5Kang, J. and Ogawa, T., Appl. Phys. Lett. 71, 2304 (1997).CrossRefGoogle Scholar
6Sverdlov, B.N., Martin, G.A., Morkoc, H., and Smith, D.J., Appl. Phys. Lett. 67, 2063 (1995).CrossRefGoogle Scholar
7Kang, J. and Ogawa, T., J. Mater. Res. 14, 1 (1999).CrossRefGoogle Scholar
8Liliental-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).CrossRefGoogle Scholar
9Kang, J. and Ogawa, T., J. Mater. Res. 13, 2100 (1998).CrossRefGoogle Scholar
10Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elsner, M., Frauenheim, Th., Heggie, M.I., Oberg, S., and Briddon, P.R., Phys. Rev. Lett. 79, 3672 (1997).CrossRefGoogle Scholar
11Xin, Y., Pennycook, S.J., Browning, N.D., Nellist, P.D., Sivananthan, S., Omnes, F., Beaumont, B., Faurie, J.P., and Gibart, P., Appl. Phys. Lett. 72, 2680 (1998).CrossRefGoogle Scholar
12Sakai, A., Sunakawa, H., and Usui, A., Appl. Phys. Lett. 71, 2259 (1997).CrossRefGoogle Scholar
13Spence, J.C.H., Experimental High-Resolution Transmission Elec-tron Microscopy (Clarendon Press, Oxford, United Kingdom, 1989).Google Scholar
14Amelinckx, S., in Characterization of Materials, edited by Lifshin, E. (VCH, Weinheim, Germany, 1992), p. 96.Google Scholar
15Potin, V., Ruterana, P., Nouet, G., Pond, R.C., and Morkoc, H., Phys. Rev. B 61, 5587 (2000).CrossRefGoogle Scholar
16Bogustawski, P. and Bernholc, J., Phys. Rev. B 56, 9496 (1997).CrossRefGoogle Scholar
17Mattila, T. and Nieminen, R.M., Phys. Rev. B 54, 16676 (1996).CrossRefGoogle Scholar
18Elsner, J., Jones, R., Heggie, M.I., Sitch, P.K., Haugk, M., TFrauenheim, h., Oberg, S., and Briddon, P.P., Phys. Rev. B 58, 12571 (1998).CrossRefGoogle Scholar
19Wu, X.H., Brown, L.M., Kapolnek, D., Keller, S., Keller, B., and Denbaars, S.P., J. Appl. Phys. 80, 3228 (1996).CrossRefGoogle Scholar
20Yang, S., Theoretical Basis of Dislocations in Crystals (Scientific Press, Beijing, P. R. China, 1998), Vol. 1, Chap. 4, p. 136.Google Scholar