Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T22:40:55.117Z Has data issue: false hasContentIssue false

TEM observations of the mechanism of delamination of chromium films from silicon substrates

Published online by Cambridge University Press:  31 January 2011

D. Goyal
Affiliation:
Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2275
A.H. King
Affiliation:
Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2275
Get access

Abstract

We have observed the complete delamination of polycrystalline chromium films from single crystal silicon substrates during deposition due to the formation of high internal stresses. These intrinsic stresses can give rise to interfacial defects which assist in the separation of the film from the substrate. Stresses in the film are balanced by stresses in the substrate, which cause mechanical failure in the substrate near the interface. Extensive arrays of dislocations and cracking of the substrate have been observed. We find that the delamination of the films from the substrate is initiated by the formation of damage in the substrate, rather than to the film or the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chopra, K. L., Thin Film Phenomena (McGraw-Hill, New York, 1969).Google Scholar
2.d'Heurle, F. M., Int. Mater. Rev. 34, 53 (1989).CrossRefGoogle Scholar
3.Segmiiller, A. and Murakami, M., Treatise on Materials Science and Technology, edited by Tu, K. N. and Rosenberg, R. (Academic Press, New York, 1983).Google Scholar
4.Ng, W., M. S. Thesis, State University of New York, Stony Brook, NY 1986.Google Scholar
5.Namaroff, M., M. S. Thesis, State University of New York, Stony Brook, NY 1987.Google Scholar
6.Hu, M. S. and Evans, A. G., Acta Metall. 37, 917 (1989).CrossRefGoogle Scholar
7.Goyal, D., King, A. H., and Bilello, J. C., in Electronic Packaging Materials Science III, edited by Jaccodine, R., Jackson, K. A., and Sundahl, R. C. (Mater. Res. Soc. Symp. Proc. 108, Pittsburgh, PA, 1988), p. 395.Google Scholar
8.Goyal, D. and King, A. H., AIME Topical Symposium on Microstructural Science for Thin Film Metallization in Electronics Applications, TMS, 139 (1988).Google Scholar
9.Booker, G. R. and Stickler, R., J. Appl. Phys. 13, 446 (1962).Google Scholar
10.Bravman, J. C. and Sinclair, R., J. Electron Microsc. Technol. 1, 53 (1984).CrossRefGoogle Scholar
11.Goyal, D., Ph.D. Dissertation, State University of New York, Stony Brook, NY 1990.Google Scholar
12.Howie, A. and Whelan, M. J., Proc. R. Soc. A267, 206 (1962).Google Scholar
13.Neirynck, M., Samaey, W., and Van Poucke, L., J. Vac. Sci. Technol. 11, 647 (1974).CrossRefGoogle Scholar
14.Bellous, M. V. and Wayman, C. M., J. Appl. Phys. 38, 5119 (1967).CrossRefGoogle Scholar
15.Haghiri-Gosnet, A. M., Ladan, F. R., Mayeux, C., Launois, H., and Jancour, M. C., J. Vac. Sci. Technol. A7, 2663 (1989).CrossRefGoogle Scholar
16.Wan, L. J. and Kuo, K. H., J. Vac. Sci. Technol. A7, 2678 (1989).CrossRefGoogle Scholar
17.Pargellis, A. N., J. Vac. Sci. Technol. A7, 27 (1989).CrossRefGoogle Scholar
18.Sylwesterowicz, W. D., Philos. Mag. 7, 1825 (1962).CrossRefGoogle Scholar
19.John, C. St., Philos. Mag. 32, 1193 (1975).CrossRefGoogle Scholar
20.Michot, G. and George, A., Scripta Metall. 20, 1495 (1986).CrossRefGoogle Scholar
21.Chiao, Y-H. and Clarke, D. R., Acta Metall. 37, 203 (1989).CrossRefGoogle Scholar
22.Rozhanski, N. V., Surf. Phys. Chem. Mech. 6, 129 (1985). (in Russian)Google Scholar