Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T06:16:22.064Z Has data issue: false hasContentIssue false

Synthesis of nanocrystalline Ni–Fe alloy powders by spray pyrolysis

Published online by Cambridge University Press:  31 January 2011

S. Eroglu
Affiliation:
TUBITAK-Marmara Research Center, Materials Research Department, Gebze-Kocaeli, Turkey
S.C. Zhang
Affiliation:
Department of Materials Science and Engineering and Particulate Materials Center, Pennsylvania State University, University Park, Pennsylvania 16802
G. L. Messing
Affiliation:
Department of Materials Science and Engineering and Particulate Materials Center, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Nanocrystalline 70 wt. % Ni–30 wt.% Fe alloy powders were synthesized by spray pyrolysis from a solution of nickelcene (C2H5)2Ni and ferrocene (C2N5)2Fe dissolved in 2-methoxyethanol. The alloy powder consisted of <10 nm and 70 to 80 nm particles. Thermodynamic analysis is shown to be a useful tool for gaining insight into the thermochemistry of the spray pyrolysis process.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kear, B. H. and McCandlish, L. E., J. Adv. Mater., Oct. 11 (1993).Google Scholar
2.Messing, G. L., Zhang, S. C., and Jayanthi, G. V., J. Am. Ceram. Soc. 76 (11), 2707 (1993).CrossRefGoogle Scholar
3.Hardtle, S., Dornier Technical Magazine, March, 54 (1991).Google Scholar
4.Carim, A. H., Douherty, P., Kodas, T. T., and Ott, K., Mater. Lett. 8, 355 (1989).CrossRefGoogle Scholar
5.Gurav, A. S., Duan, Z., Wang, L., Hampden-Smith, M. J., and Kodas, T. T., Chem. Mater. 5, 214 (1993).CrossRefGoogle Scholar
6.Nagashima, K., Wada, M., and Kato, A., J. Mater. Res. 5, 2828 (1990).CrossRefGoogle Scholar
7.Nagashima, K., Iwaida, T., Sasaki, H., Katatae, Y., and Kato, A., Nippon Kagaku Kaishi 1, 17 (1990).CrossRefGoogle Scholar
8.Pluym, T. C., Lyon, S. W., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., and Glicksman, H. D., Mater. Res. Bull. 28, 369 (1993).CrossRefGoogle Scholar
9.Pluym, T. C., Lyon, S. W., Gurav, A. S., Ward, T. L., Kodas, T. T., Wang, L. M., and Glicksman, H. D., J. Aerosol Sci. 24 (3), 383 (1993).CrossRefGoogle Scholar
10.Pluym, T. C., Kodas, T. T., Wang, L-M., and Glicksman, H. D., J. Mater. Res. 10, 1661 (1995).CrossRefGoogle Scholar
11.German, R. M., Bourguignon, L. L., and Rabin, B. H., J. Metals, 36 (August 1985).Google Scholar
12.German, R. M., Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1994), pp. 282287.Google Scholar
13.Thümmler, F. and Oberacker, R., Introduction to Powder Metallurgy (The Institute of Materials, London, UK, 1993), p. 241.Google Scholar
14.Nash, P., Phase Diagrams of Binary Nickel Alloys (ASM INTERNATIONAL, Materials Park, OH, 1991), p. 115.Google Scholar
15.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, New York, 1978), p. 256.Google Scholar
16.Besmann, T. M., Report TM-5775, Oak Ridge National Lab., TN (1977).Google Scholar
17.JANAF Thermochemical Tables, J. Physical and Chemical Reference Data (American Chemical Society and American Institute of Physics, Washington, DC, 1985), Vol. 14.Google Scholar
18.Barin, I., Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1993).Google Scholar
19.Stull, D. R., Westrum, E. F. Jr., and Sinke, G. C., The Chemical Thermodynamics of Organic Compounds (Robert E. Krieger Co., Malabar, FL 1986).Google Scholar
20.Eroglu, S. and Gallois, B., Surf. Coating Technol. 49, 275 (1991).CrossRefGoogle Scholar
21.Dirkx, R., Ph.D. Dissertation, Pennsylvania State University, University Park, PA (1986).Google Scholar