Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T04:59:42.209Z Has data issue: false hasContentIssue false

Synthesis of Fe-rich Fe–Al nanocrystalline solid solutions using ball milling

Published online by Cambridge University Press:  31 January 2011

H. G. Jiang
Affiliation:
Department of Chemical, Biochemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697-2575
H. M. Hu
Affiliation:
Department of Chemical, Biochemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697-2575
E. J. Lavernia
Affiliation:
Department of Chemical, Biochemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697-2575
Get access

Abstract

The synthesis of nanocrystalline Fe, Fe–4 wt% Al, and Fe–10 wt% Al solid solutions by SPEX ball milling has been studied. The microstructural evolution during ball milling, as well as subsequent heat treatment, has been characterized. The results demonstrate that ball milling promotes the formation of αFe–4 wt% Al and αFe–10 wt% Al solid solutions by reducing the activation energy of these alloys and generating thermal energy during this process. For Fe–10 wt% Al powders milled for various time intervals up to approximately 20 min, the FeAl intermetallic compound is formed. For alloys annealed at temperatures ranging from 600 to 1000 °C, the addition of 10 wt% Al to Fe significantly enhances the thermal stability of the nanocrystalline Fe–Al alloys. Interestingly, the addition of Al within the range of 4–10 wt% seems to have little effect on the thermal stability of these alloys annealed under the same conditions. Also, the thermal stability improves for alloys milled in air as opposed to those processed using Ar.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Suryanarayana, C., Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
3.He, L. and Ma, E., J. Mater. Res. 11, 72 (1996).CrossRefGoogle Scholar
4.Rawers, J., Slavens, G., Govier, D., Dogan, C., and Doan, R., Metall. Mater. Trans. 27A, 3126 (1996).CrossRefGoogle Scholar
5.Tellkamp, V. L., Lau, M. L., Fabel, A., and Lavernia, E.J., Nano-Structured Mater. 9, 489 (1997).Google Scholar
6.Kear, B. H. and Skandan, G., NanoStructured Mater. 7, 913 (1996).CrossRefGoogle Scholar
7.Knauth, P., Charai, A., and Gas, P., Scripta Metall. Mater. 28, 325 (1993).CrossRefGoogle Scholar
8.Hofler, H. J. and Averback, R. S., Scripta Metall. Mater. 24, 2401 (1990).Google Scholar
9.Boylan, K., Ostrander, D., Erb, U., Palumbo, G., and Aust, K. T., Scripta Metall. Mater. 25, 2711 (1991).CrossRefGoogle Scholar
10.Bansal, C., Gao, Z. Q., and Fultz, B., NanoStructured Mater. 5, 327 (1995).CrossRefGoogle Scholar
11.Gao, Z.Q. and Fultz, B., NanoStructured Mater. 4, 939 (1994).Google Scholar
12.Gao, Z.Q. and Fultz, B., NanoStructured Mater. 2, 231 (1993).CrossRefGoogle Scholar
13.Krill, C. E., Klein, R., Janes, S., and Birringer, R., Mater. Sci. Forum 179–181, 443 (1995).CrossRefGoogle Scholar
14.Enzo, S., Frattini, R., Gupta, R., Macri, P. P., Principi, G., Schiffini, L., and Scipione, G., Acta Mater. 44, 3105 (1996).CrossRefGoogle Scholar
15.Morris, D. G. and Gunther, S., Acta Mater. 44, 2847 (1996).Google Scholar
16.Bonetti, E., Scipione, G., Valdre, G., Enzo, S., Frattini, R., and Macri, P. P., J. Mater. Sci. 30, 2220 (1995).CrossRefGoogle Scholar
17.Wolski, K., Le Caër, G., Delcroix, P., Fillit, R., Thevenot, F., and Le Coze, J., Mater. Sci. Eng. A207, 97 (1996).CrossRefGoogle Scholar
18.Perez, R. J., Huang, B., and Lavernia, E. J., NanoStructured Mater. 7, 565 (1996).CrossRefGoogle Scholar
19.Perez, R. J., Jiang, H. G., and Lavernia, E. J., NanoStructured Mater. 9, 71 (1997).CrossRefGoogle Scholar
20.Perez, R. J., Jiang, H. G., and Lavernia, E. J., Metall. Trans. (1997).Google Scholar
21.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Inc., Reading, MA, 1978).Google Scholar
22.Nelson, J. B. and Riley, D. P., Proc. Phys. Soc. London 57, 160 (1945).Google Scholar
23.Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures (Wiley-Interscience, New York, 1974), p. 594.Google Scholar
24.Kissinger, H. E., Anal. Chem. 29, 1702 (1957).Google Scholar
25.Sasaki, M., Kawakami, F., Komaki, C., and Ishida, M., Proceedings of the International Thermal Spray Conference & Exposition, Orlando, FL (1992), p. 165.Google Scholar
26.Kreye, H. and Blume, D., Proceedings of the International Thermal Spray Conference & Exposition, Orlando, FL (1992), p. 177.Google Scholar
27.Wagner, C. N. J. and Boldrick, M. S., Mater. Sci. Eng. A133, 26 (1991).CrossRefGoogle Scholar
28.Moelle, C., Schmidt, C., Müller, K., and Fecht, H. J., Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D. L. (The Minerals, Metals & Materials Society, Warrendale, PA, 1996), p. 121.Google Scholar
29.Oleszak, D. and Shingu, P. H., Mater. Sci. Eng. A181/A182, 1217 (1994).Google Scholar
30.Hood, G. M., Philos. Mag. 21, 305 (1970).CrossRefGoogle Scholar
31.Vignes, A., Philibert, J., and Badia, N.et al., Diffusion Data 3, 269 (1969).Google Scholar
32.Jiang, H. G., Perez, R. J., Lau, M. L., and Lavernia, E. J., J. Mater. Res. 12, 1429 (1997).CrossRefGoogle Scholar
33.Jiang, H. G., Perez, R. J., Lau, M.L., and Lavernia, E. J., in Nano-phase and Nanocomposite Materials II, edited by Komarneni, S., Parker, J. C., and Wollenberger, H. J. (Mater. Res. Soc. Symp. Proc. 457 1997), p. 297.Google Scholar
34.Warlimont, H. and Thomas, G., Metal Sci. J. 4, 47 (1970).Google Scholar
35.Niessen, A. K., de Boer, F. R., Boom, R., de Châtel, P. F., Mattens, W. C. M., and Miedema, A.R., CALPHAD 7, 51 (1983).CrossRefGoogle Scholar
36.Zener, C., quoted by Smith, C. S., Trans. Met. Soc. A.I.M.E. 175, 15 (1949).Google Scholar
37.Malow, T.R. and Koch, C. C., Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D.L. (The Minerals, Metals & Materials Society, Warrendale, PA, 1996), p. 33.Google Scholar
38.Fultz, B., Hong, L. B., Gao, Z. Q., and Bansal, C., Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D.L. (The Minerals, Metals & Materials Society, Warrendale, PA, 1996), p. 249.Google Scholar
39.Gibbs, J. W., The Collected Works of J. W. Gibbs (Longmans, Green, and Co., New York, 1928), Vol. I, p. 55.Google Scholar