Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T08:02:08.374Z Has data issue: false hasContentIssue false

Synthesis and characterization of BaSn(OH)6 and BaSnO3 acicular particles

Published online by Cambridge University Press:  31 January 2011

M. T. Buscaglia
Affiliation:
Institute for Energetics and Interphases, National Research Council, via De Marini 6, I-16149 Genoa, Italy
M. Leoni
Affiliation:
Institute for Energetics and Interphases, National Research Council, via De Marini 6, I-16149 Genoa, Italy
M. Viviani
Affiliation:
Institute for Energetics and Interphases, National Research Council, via De Marini 6, I-16149 Genoa, Italy
V. Buscaglia*
Affiliation:
Institute for Energetics and Interphases, National Research Council, via De Marini 6, I-16149 Genoa, Italy
A. Martinelli
Affiliation:
Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, I-16146 Genoa, Italy
A. Testino
Affiliation:
Department of Process and Chemical Engineering, University of Genoa, Fiera del Mare, Pad. D., I-16146 Genoa, Italy
P. Nanni
Affiliation:
Department of Process and Chemical Engineering, University of Genoa, Fiera del Mare, Pad. D., I-16146 Genoa, Italy
*
a)Address all correspondence to this author. e-mail: buscaglia@icfam.ge.cnr.it
Get access

Abstract

The synthesis of BaSn(OH)6 acicular crystals by precipitation at 100 °C from aqueous solutions and their transformation in the perovskitelike compound BaSnO3 was investigated. Single acicular crystals 100–200 μm in length were obtained from a 0.05M solution, whereas bundlelike aggregates of 20–40 μm were precipitated from 0.2–0.6 M solutions. The x-ray diffraction pattern of barium hexahydroxostannate was indexed according to monoclinic symmetry with cell parameters a = 11.029 ± 0.002 Å, b = 6.340 ± 0.001 Å, c = 10.563 ± 0.001 Å = 128.51 ± 0.01°, α = γ = 90°. The BaSn(OH)6 particles decomposed to BaSnO3 and water at approximately 270 °C and the original morphology was retained. The resulting product had specific surface area up to 30–40 m2/g and consisted of 10–20 nm crystallites. The larger unit cell edge in comparison to the reference value and the continuous weight loss up to 1200 °C indicate that water is not completely released during decomposition and a substantial amount of proton defects (up to 0.4 mol per mole of BaSnO3) is incorporated in the perovskite lattice as OH groups. Normal crystallographic properties of BaSnO3 are restored only after calcination at 1300 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jayaraman, V., Mangamma, G., Gnanasekaran, T., and Periaswami, G., Solid State Ionics 86–88, 1111 (1996).CrossRefGoogle Scholar
2.Ostrick, B., Fleischer, M., Lampe, U., and Meixner, H., Sens. Actuators B 44, 601 (1997).CrossRefGoogle Scholar
3.Tao, S., Gao, F., Liu, X., Sørensen, O.T., Sens. Actuators B 71, 223 (2000).CrossRefGoogle Scholar
4.Viviani, M., Buscaglia, M.T., Buscaglia, V., Leoni, M., and Nanni, P., J. Eur. Ceram. Soc. 21, 1981 (2001).CrossRefGoogle Scholar
5.Wagner, G. and Binder, H., Z. Anorg. Allg. Chem. 297, 328 (1958).CrossRefGoogle Scholar
6.Ostrick, B., Fleischer, M., and Meixner, H., J. Am. Ceram. Soc. 80, 2153 (1997).CrossRefGoogle Scholar
7.Huang, T., Nakamura, T., Itoh, M., Inaguma, Y., and Ishiyama, O., J. Mater. Sci. 30, 1556 (1995).CrossRefGoogle Scholar
8.Murugaraj, P., Kreuer, K.D., He, T., Schober, T., and Maier, J., Solid State Ionics 98, 1 (1997).CrossRefGoogle Scholar
9.Kreuer, K.D., Solid State Ionics 125, 285 (1999).CrossRefGoogle Scholar
10.Smith, M.G., Goodenough, J.B., Manthiram, A., Taylor, R.D., Peng, W., Kimball, C.W., J. Solid State Chem. 98, 181 (1992).CrossRefGoogle Scholar
11.Azad, A-M. and Hon, N.C., J. Alloys Comp. 270, 95 (1998).CrossRefGoogle Scholar
12.Upadhyay, S., Parkash, O., and Kumar, D., Mater. Lett. 49, 251 (2001).CrossRefGoogle Scholar
13.Kutty, T.R.N. and Vivekanadan, R., Mater. Res. Bull. 22, 1457 (1987).CrossRefGoogle Scholar
14.Vivekanandan, R. and Kutty, T.R.N., Ceram. Int. 14, 207 (1988).CrossRefGoogle Scholar
15.Udawatte, C.P. and Yoshimura, M., Mater. Lett. 47, 7 (2001).CrossRefGoogle Scholar
16.Coffeen, W.W., J. Am. Ceram. Soc. 36, 207 (1953).CrossRefGoogle Scholar
17.Leoni, M., Viviani, M., Nanni, P., and Buscaglia, V., J. Mater. Sci. Lett. 15, 1302 (1996).CrossRefGoogle Scholar
18.Licheron, M., Jouan, G., and Husson, E., J. Eur Ceram. Soc. 17, 1453 (1997).CrossRefGoogle Scholar
19.Azad, A-M., Hashim, M., and Baptist, S., J. Mater. Sci. 35, 5475 (2000).CrossRefGoogle Scholar
20.Udawatte, C.P., Kakihana, M., and Yoshimura, M., Solid State Ionics 108, 23 (1998).CrossRefGoogle Scholar
21.Pfaff, G., J. Eur. Ceram. Soc. 12, 159 (1993).CrossRefGoogle Scholar
22.Warren, B.E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 251.Google Scholar
23.Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA (1989).Google Scholar
24.Wiles, D.B. and Young, R.A., J. Appl. Crystallogr. 14, 149 (1981).CrossRefGoogle Scholar
25.Boultif, A. and Lou, D.ër, J. Appl. Crystallogr. 24, 987 (1991).CrossRefGoogle Scholar
26.Alía, J.M., Mera, Y. Díaz de, Edwards, H.G.M., Martín, P. González, and Andrés, S. López, Spectrochimica Acta A 53, 2347 (1997).CrossRefGoogle Scholar
27.Inorganic Crystal Structure Database, Gmelin Institut, Fachinformationszentrum Karlsruhe, Germany (1998).Google Scholar
28.Welch, M.D. and Crichton, W.A., Mineralogical Magazine 66, 431 (2002).CrossRefGoogle Scholar
29.Knacke, O., Kubaschewski, O., and K, Hesselmann, Thermochemical Properties of Inorganic Substances, 2nd ed. (Springer, Berlin, Germany, 1991).Google Scholar
30.Waser, R., J. Am. Ceram. Soc. 71, 58 (1988).CrossRefGoogle Scholar
31.Hennings, D. and Schreinemacher, S., J. Eur. Ceram. Soc. 9, 41 (1992).CrossRefGoogle Scholar
32.Viviani, M., Buscaglia, M.T., Testino, A., Buscaglia, V., Bowen, P., and Nanni, P., J. Eur. Ceram. Soc. (in press).Google Scholar