Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T10:09:34.584Z Has data issue: false hasContentIssue false

Subsolidus phase equilibria of coexisting high-Tc Pb-2223 and 2212 superconductors in the (Bi, Pb)–Sr–Ca–Cu–O system under 7.5% O2

Published online by Cambridge University Press:  31 January 2011

W. Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
L. P. Cook
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
F. Jiang
Affiliation:
Geology Department, University of Maryland, College Park, Maryland 20742
W. Greenwood
Affiliation:
Geology Department, University of Maryland, College Park, Maryland 20742
U. Balachandran
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois
M. Lanagan
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois
Get access

Abstract

The subsolidus phase relationships of the high-Tc 2223 superconductor in the (Bi, Pb)–Sr–Ca–Cu–O (BSCCO) system have been examined at 810–820 °C. All experiments were carried out at ambient pressure in a 7.5% O2 (92.5% Ar) atmosphere. Eleven phases were found to exist in equilibrium with the 2223 phase. These 11 phases include CuO and 10 oxide solid solutions. From among these phases, a total of 48 five-phase combinations including the 2223 and 2212 phases were investigated experimentally, and 16 equilibrium assemblages were found which define a multicomponent compositional space corresponding to the 2223 + 2212 solid-state compatibility region. The subsolidus data form a partial basis for future investigation of the Pb-2223 primary phase field.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provot, J., and Raveau, B., Z. Phys. B 68, 421 (1987).CrossRefGoogle Scholar
2.Malozemoff, A. P., Li, Q., and Fleshler, S., unpublished.Google Scholar
3.Willis, J. O, Ray, R. D. II, Holesinger, T. G., Zhou, R., Salazar, K. V., Coulter, J. Y., Gingert, J. J., Phillips, D. S., and Peterson, D. E., Proceedings of the 7th US/Japan Workshop on High Temperature Superconductors, Tsukuba, Japan, 2224 October 1995.Google Scholar
4.Majewski, P., Kaesche, S., Su, H-L., and Aldinger, F., Physica C 221, 295 (1994).CrossRefGoogle Scholar
5.Boekhlt, M., Gotz, D., Idink, H., Fleuster, M., Hah, T., Woermann, E., and Güntherodt, G., Physica C 176, 4207 (1991).CrossRefGoogle Scholar
6.Ikeda, Y., Hiroi, Z., Ito, H., Shimomura, S., Takano, M., and Bando, Y., Physica C 165, 189 (1989).CrossRefGoogle Scholar
7.Iwai, Y., Hoshi, Y., Saito, H., and Takata, M., Physica C 170, 319 (1990).CrossRefGoogle Scholar
8.Wakata, Y., Namba, T., Takada, J., and Egi, T., Physica C 219, 366 (1994).Google Scholar
9.Dorris, S. E., Pitz, M. A., Dawley, J. T., and Trapp, D. J., J. Electron. Mater. 24 (12), 832 (1995).CrossRefGoogle Scholar
10.Kaufman, D. Y., Lanagan, M. T., Dorris, S. E., Dawley, J. T., Bloom, I. D., Hash, M. C., Chen, N., DeGuire, M. R., and Poeppel, R. B., Appl. Supercond. 1 (1/2), 8191 (1993).CrossRefGoogle Scholar
11.Balachandran, U., Iyer, A. N., Haldar, P., Hoehn, J. G. Jr, and Motowidlo, L. R., Proc. Fourth Int. Conference and Exhibition: World Congress on Superconductivity, Vol. II, edited by Kristen, K. and Burnham, C., Orlando, FL, June 27–July 1, 1994, pp. 639649.Google Scholar
12.Sandhage, K. H., Riley, G. N. Jr, and Carter, W., JOM 43, 21 (1991).CrossRefGoogle Scholar
13.Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibata, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Magn. 27, 1231 (1991).CrossRefGoogle Scholar
14.Aksenova, T. D., Bratukhin, P. V., Shavkin, S. V., Melnkov, V. L., Antipova, E. V., Khlebova, N. E., and Shikov, A. K., Physica C 205, 271279 (1993).CrossRefGoogle Scholar
15.Luo, J. S., Merchant, N., Maroni, V. A., Dorris, S. E., Lanagan, M. T., and Tani, B. S., J. Am. Ceram. Soc. 78, 27852789 (1995).CrossRefGoogle Scholar
16.Dou, S. X., Liu, H. K., Guo, Y. C., Bhasale, R., Hu, Q. Y., Babic, E., and Kusevic, I., Appl. Supercond. 2 (3/4), 191199 (1994).CrossRefGoogle Scholar
17.Mlchevsky, M. T., Yill, P. L., and Gherardi, L., Appl. Supercond. 2 (1), 3340 (1994).Google Scholar
18.Merchant, N., Luo, J. S., Maroni, V. A., Riley, G. N., and Carter, W. L., Appl. Phys. Lett. 65 (8), 10391041 (1994).CrossRefGoogle Scholar
19.Luo, J. S., Merchant, N., Maroni, V. A., Riley, G. N. Jr, and Carter, W. L., Appl. Phys. Lett. 63 (5), 690692 (1993).CrossRefGoogle Scholar
20.Li, Y., Li, C., and Zhou, L., Physica C 235–240, 488489 (1994).Google Scholar
21.Sung, Y. S. and Hellstrom, E. E., Physica C 255, 266274 (1995).CrossRefGoogle Scholar
22.Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., Riley, G. N. Jr, and Sandhage, K. H., J. Appl. Phys. 72 (6), 23852389 (1992).CrossRefGoogle Scholar
23.Hu, Q. Y., Schalk, R. M., Weber, H. W., Liu, H. K., Wang, R. K., Czurda, C., and Dou, S. X., J. Appl. Phys. 78, 1123 (1995).CrossRefGoogle Scholar
24.Hu, Q. Y., Weber, H. W., Sauerzopf, F. M., Schulz, G. W., Schalk, R. M., Neumüller, H. W., and Dou, S. X., Appl. Phys. Lett. 65, 3008 (1994).CrossRefGoogle Scholar
25.Luo, J. S., Faudot, F., Chevalier, J-P., Portier, R., and Michel, D., J. Solid State Chem. 89, 94 (1990).CrossRefGoogle Scholar
26.Endo, U. and Kawai, T., J. Appl. Phys. 28, L1163 (1989).Google Scholar
27.Endo, U., Koyama, S., and Kawai, T., J. Appl. Phys. 28 (2), 11901192 (1989).Google Scholar
28.Toledano, J. C., Morin, D., Schneck, J., Faqir, H., Monnereau, O., Vacquier, G., Strobel, P., and Barnole, V., Physica C 253, 5362 (1995).CrossRefGoogle Scholar
29.Riley, G. N. Jr, Carter, W. L., and Sandhage, K. H., Int. Workshop on Superconductivity, cosponsored by ISTEC and MRS, June 23–26, Honolulu, 216219 (1992).Google Scholar
30.Sasakura, H., Minamigawa, S., Nakahigashi, K., Kogachi, M., Nakanishi, S., Fukoka, N., Yoshikaa, M., Noguchi, S., Okuda, K., and Yanase, A., Jpn. J. Appl. Phys. L1163–L1166 (1989).CrossRefGoogle Scholar
31.Kaesche, S., Majewski, P., and Aldinger, F., J. Electron. Mater. 24 (12), 1829 (1995).CrossRefGoogle Scholar
32.Guo, Y. C., Liu, H. K., and Dou, S. X., Physica C 200, 147154 (1992).CrossRefGoogle Scholar
33.Xu, M., Finnemore, D. K., Balachandran, U., and Haldar, P., Appl. Phys. Lett. 68 (24), 33593361 (1995).CrossRefGoogle Scholar
34.Xie, M., Zhang, L. W., Chen, T. G., Li, X. T., and Cai, J., Physica C 206, 251256 (1993).CrossRefGoogle Scholar
35.MacManus-Driscoll, J. I. and Bravman, J. C., J. Am. Ceram. Soc. 77 (9), 23052313 (1994).CrossRefGoogle Scholar
36.Zhang, H. and Sato, H., Physica C 214, 265271 (1993).CrossRefGoogle Scholar
37.Tetenbaum, M., Hash, M., Tani, B. S., Luo, J. S., and Maroni, V. A., Physica C 246, 396402 (1995).CrossRefGoogle Scholar
38.Tetenbaum, M., Hash, M., Tani, B. S., Luo, J. S., and Maroni, V. A., Physica C 235–240, 321322 (1994).CrossRefGoogle Scholar
39.Xu, M. and Finnemore, D. K., J. Appl. Phys. 76 (2), 11111115 (1994).CrossRefGoogle Scholar
40.Mozhaev, A. P., Chernyev, S. V., Badun, Y. V., and Kuznetsov, M. S., J. Solid State Chem. 119, 120124 (1995).CrossRefGoogle Scholar
41.Grivel, J-C. and Flükiger, R., Physica C 235–240, 505506 (1994).CrossRefGoogle Scholar
42.Parrell, J. A., Feng, Y., Dorris, S. E., and Larbalestier, D. C., J. Mater. Res. unpublished.Google Scholar
43.Carter, W. L., Riley, G. N., Luo, J. S., Merchant, N., and Maroni, V. A., Appl. Supercond. 1 (10–12), 15231534 (1993).CrossRefGoogle Scholar
44.Huang, Y. B., de la Fuente, G. F., Larrea, A., and Navarro, R., Supercond. Sci. Technol. 759765 (1994).CrossRefGoogle Scholar
45.Wong-Ng, W. and Freiman, S. W., Superconducting Glass-Ceramics in BSCCO: Fabrication and Its Application (Worldwide Publishers, Singapore, in press, 1997).Google Scholar
46.Wong-Ng, W. and Freiman, S. W., Appl. Supercond. 2 (3/4), 163 (1994).CrossRefGoogle Scholar
47.Xu, M., Finnemore, D. K., Balachandran, U., and Haldar, P., J. Appl. Phys. 78 (1), 360363 (1995).CrossRefGoogle Scholar
48.Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., and Riley, G. N. Jr, Appl. Supercond. 1 (1/2), 101107 (1993).CrossRefGoogle Scholar
49.Chen, F. H., Koo, H. S., and Tseng, T. Y., Appl. Phys. Lett. 58 (6), 637639 (1991).CrossRefGoogle Scholar
50.Gao, X-H., Gao, D., Li, J-H., Li, J., and Jiang, S-F., Physica C 229, 124128 (1994).CrossRefGoogle Scholar
51.Gao, X-H., Li, J., Jiang, S-F., Gao, D., Zheng, G-D., and Gao, S., Physica C 244, 321332 (1995).CrossRefGoogle Scholar
52.Wang, M., Xiong, G., Tang, X., and Hong, Z., Physica C 210, 413416 (1993).CrossRefGoogle Scholar
53.Zhao, Z. X. and Che, G. C., Appl. Supercond. 2 (3/4), 227235 (1994).CrossRefGoogle Scholar
54.Hu, Q. Y., Liu, H. K., and Dou, S. X., Physica C 250, 714 (1995).CrossRefGoogle Scholar
55.Nhien, S. and Desgardin, G., Physica C 272, 309318 (1996).CrossRefGoogle Scholar
56.Luo, J. S., Merchant, N., Escorcia-Aparicio, E., Maroni, V. A., Tani, B. S., Carter, W. L., and Riley, G. N. Jr, J. Mater. Res. 9, 30593067 (1994).CrossRefGoogle Scholar
57.Endo, U., Koyama, S., and Kawai, T., J. Appl. Phys. 27, L1476 (1988).CrossRefGoogle Scholar
58.Wu, W. and Nicholson, P. S., J. Mater. Res. 7, 38 (1992).Google Scholar
59.Oh, I. S. and Mukherjee, K., Physica C 227, 197204 (1994).CrossRefGoogle Scholar
60.Merchant, N., Luo, J. S., Maroni, V. A., Sinha, S. N., Riley, G. N. Jr, and Carter, W. L., Appl. Supercond. 2 (3/4), 217225 (1994).CrossRefGoogle Scholar
61.Zhu, W. and Nicholson, P. S., J. Appl. Phys. 73 (12), 84238428 (1993).CrossRefGoogle Scholar
62.Toledano, J. C., Strobel, P., Morin, D., Schneck, J., Vacquier, G., Monereau, O., Barnole, V., Primot, J., and Fournier, T., Appl. Supercond. 1 (3–6), 581589 (1993).CrossRefGoogle Scholar
63.Strobel, P. and Fournier, T., Physica C 164 & 165, 519525 (1990).Google Scholar
64.Strobel, P., Toledano, J. C., Morin, D., Schneck, J., Vacquier, G., Monereau, O., Primot, J., and Fournier, T., Physica C 201, 2742 (1992).CrossRefGoogle Scholar
65.Osamura, K. and Maruyama, T., Proceedings of the Society of Nontraditional Technology, organized by the New Superconducting Materials Forum, Tsukuba, Japan, 1 (1992).Google Scholar
66.Kaesche, S., Majewski, P., and Aldinger, F., Metallk, Z.. (in press, 1997).Google Scholar
67.Morin, D., Strobel, P., Toledano, J. C., Schneck, J., Vacquier, G., Monereau, O., Primot, J., and Fournier, T., Physica C 185–189, 487488 (1991).CrossRefGoogle Scholar
68.Ikeda, Y., Ito, H., Shimomura, S., Hiroi, Z., Takano, M., Bando, Y., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Takeda, Y., and Takada, T., Physica C 190, 1821 (1991).CrossRefGoogle Scholar
69.Sung, Y. S. and Hellstrom, E. E., Physica C 253, 7988 (1995).CrossRefGoogle Scholar
70.Huang, Y. T., Wang, W-N., Wu, S-F., Shei, C-Y., Hurng, W-M., Lee, W-H., and Wu, P-T., J. Am. Ceram. Soc. 73 (11), 35073510 (1990).CrossRefGoogle Scholar
71.Majewski, P., Kaesche, S., and Aldinger, F., unpublished.Google Scholar
72.Wong-Ng, W., Cook, L. P., and Jiang, F., J. Am. Ceram. Soc. (in press, 1997).Google Scholar
73.Wong-Ng, W., Cook, L. P., and Jiang, F., Appl. Supercond. (in press, 1997).Google Scholar
74.Holesinger, T. G., Salazar, K. V., Phillips, D. S., Sargent, B. L., Bremser, J. K., Bingert, J. F., Willis, J. O., and Peterson, D. E., J. Mater. Res. 11, 111 (1996).Google Scholar
75.Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F., J. Res. Nat. Inst. Stand. Technol. 95, 291 (1990).CrossRefGoogle Scholar
76.Wong-Ng, W., Cook, L. P., and Jiang, F., Physica C, unpublished.Google Scholar
77.Roth, R. S., Rawn, C. J., and Bendersky, L. A., J. Mater. Res. 5, 4652 (1990).CrossRefGoogle Scholar
78.Rawn, C. J., Roth, R. S., Burton, B. P., and Hill, M. D., J. Am. Ceram. Soc. 77 (8), 21732178 (1994).CrossRefGoogle Scholar
79.Wong-Ng, W., Siegrist, T., and Roth, R. S., unpublished.Google Scholar
80.Kitaguchi, H., Takada, J., Oda, K., and Miura, Y., J. Mater. Res. 5, 13971402 (1990).CrossRefGoogle Scholar
81.Luo, J. S., Merchant, N., Maroni, V. A., Hash, M., and Rupich, M., Proc. Symp. on High-Temperature Superconductors: Synthesis, Processing, and Large Scale Applications, TMS Annual Meeting in Anaheim, CA, Feb. 48, 1996.Google Scholar
82.Wong-Ng, W., Jiang, F., and Cook, L. P., Physica C 272, 8793 (1996).CrossRefGoogle Scholar
83.Teichert, A. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem. 607, 128130 (1992).CrossRefGoogle Scholar
84.Wong-Ng, W., Kaduk, J. A., and Greenwood, W., unpublished.Google Scholar
85.Roth, R. S., Rawn, C. J., Ritter, J. J., and Burton, B. P., J. Am. Ceram. Soc. 72, 15451549 (1989).CrossRefGoogle Scholar
86.Ray, R. II and Hellstrom, E., Physica C 175, 255 (1991).CrossRefGoogle Scholar
87.Yamane, E., J. Ceram. Soc., Jpn. Int. ed. 97, 140 (1989).CrossRefGoogle Scholar