Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:13:02.774Z Has data issue: false hasContentIssue false

A study of the effect of composition on the microstructural evolution of a–SixC1x: H PECVD films: IR absorption and XPS characterizations

Published online by Cambridge University Press:  31 January 2011

E. Gat
Affiliation:
Laboratoire de Physicochimie des matériaux, URA 1312 CNRS, ENSCM, 8 rue de l'Ecole Normale, 34053 Montpellier Cedex 1, France
M.A. El Khakani
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
M. Chaker
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
A. Jean
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
S. Boily
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
H. Pépin
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
J.C. Kieffer
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
J. Durand
Affiliation:
Laboratoire de Physicochimie des matériaux, URA 1312 CNRS, ENSCM, 8 rue de l'Ecole Normale, 34053 Montpellier Cedex 1, France
B. Cros
Affiliation:
Laboratoire de Physicochimie des matériaux, URA 1312 CNRS, ENSCM, 8 rue de l'Ecole Normale, 34053 Montpellier Cedex 1, France
F. Rousseaux
Affiliation:
Laboratoire de Microstructures et de Microélectronique, L2M/CNRS, 196 Av. H. Ravera, 92220 Bagneux, France
S. Gujrathi
Affiliation:
Université de Montréal, GCM, Case Postale 6128, Succursale “A”, Montréal, Québec, Canada, H3C 3J7
Get access

Abstract

Amorphous silicon carbide films (a–SixC1x :H) deposited by the argon- or helium-diluted PECVD technique were studied as a function of their composition. Microstructural investigations were mainly achieved by means of FTIR and XPS techniques. Nuclear techniques were used to obtain precise information on the film hydrogen content. The Si–H IR-absorption band was deconvoluted in different monohydride and dihydride silicon environments. The existence of SiH2 bonds in the Si-rich composition was evidenced. From the analysis of the C–H and Si–H absorption bands it is shown that hydrogen atoms are preferentially bonded to carbon atoms. The deconvolution of the Si2p core level peak suggests that above a composition of x ∊ 0.5, the noncarburized (Si, Si, H) local environment contribution increases to the detriment of the hydrocarburized (Si, C, H) environments. From the evolution of the C1s peak, it can be deduced that there is a change in the carbon atom bonding states when the film composition is varied. These results are correlated and discussed in terms of the local bonding environments and their evolution with film composition.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, D. A. and Spear, W. E., Philos. Mag. 35, 1 (1976).CrossRefGoogle Scholar
2.Simada, T., Katayama, Y., and Komatsubara, K. F., J. Appl. Phys. 50, 5530 (1979).CrossRefGoogle Scholar
3.Roedern, V., Paul, D. K., Blake, J., Collins, R. W., Moddel, G., and Paul, W., Phys. Rev. B 25, 7678 (1982).CrossRefGoogle Scholar
4.Matsuda, A., Yamaoka, T., Wolff, S., Koyama, M., Imanishi, Y.Kataoka, H., Matsuura, H., and Tanaka, K., J. Appl. Phys. 60, 4025 (1986).CrossRefGoogle Scholar
5.Mui, K., Basa, D. K., and Smith, F. W., J. Appl. Phys. 59, 582 (1986).CrossRefGoogle Scholar
6.Andujar, J. L., Bertran, E., Canillas, A., Roch, C., and Morenza, J. L., J. Vac. Sci. Technol. A9, 2216 (1991).CrossRefGoogle Scholar
7.Wieder, H., Cardona, M., and Guarnieri, C. R., Phys. Status Solidi (b) 92, 99 (1979).CrossRefGoogle Scholar
8.Lucovsky, G., Solid State Commun. 29, 571 (1979).CrossRefGoogle Scholar
9.Catherine, Y. and Turban, G., Thin Solid Films 70, 101 (1980).CrossRefGoogle Scholar
10.Petrich, M. A., Gleason, K. K., and Reimer, J. A., Phys. Rev. B 36 (18), 9722 (1987).CrossRefGoogle Scholar
11.Lee, W. Y., J. Appl. Phys. 51 (6), 3365 (1980).CrossRefGoogle Scholar
12.Koropecki, R. R., Alvarez, F., and Arce, R., J. Appl. Phys. 69 (11), 7805 (1991).CrossRefGoogle Scholar
13.Tabata, A., Fujii, S., Susuoki, Y., Mizutani, T., and Leda, M., J. Phys. D: Appl. Phys. 23, 316 (1990).CrossRefGoogle Scholar
14.Filiponi, A., Fiorini, P., Evangelisti, F., Balerna, A., and Mobilio, S., J. de Physique C-8 47, 357 (1986).Google Scholar
15.Rizk, R. B., Kaloyeros, A. E., Williams, W. S., Finnegan, N., and Kozlonvsky, C., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp.Proc. 97, Pittsburgh, PA, 1987), p. 295.Google Scholar
16.Mui, K., Basa, D. K., and Smith, F. W., Phys. Rev. B 35, 8089 (1987).CrossRefGoogle Scholar
17.Gat, E., Cros, B., Berjoan, R., and Durand, J., Material and Manufacturing Processes 7 (3) (1991, in press).Google Scholar
18.Rosier, R. S., Benzing, W. C., and Baldo, J., Solid State Technol., June (1976), p. 45.Google Scholar
19.Haghiri-Gosnet, A. M., Rousseaux, F., Kebabi, B., Ladan, F. R., Mayeux, C., Madouri, A., Decanini, D., Bourneix, J., Corcenac, F., Launois, H., Wisnicvsky, B., Gat, E., and Durand, J., J. Vac. Sci. Technol. B8 (6), 1565 (1990).CrossRefGoogle Scholar
20.Chaker, M., Boily, S., Ginovker, A., Jean, A., Kieffer, J. C., Mercier, P. P., Pépin, H., Leung, P. K., Currie, J. F., and Lafontaine, H., in “Electron-Beam, X-ray and Ion-Beam Submicrometer Lithographies for Manufacturing,” edited by Peckerar, M. (SPIE Proceedings, Vol. 1465, Bellingham, WA, 1991), p. 16.CrossRefGoogle Scholar
21.Cros, B., Berjoan, R., Monteil, C., Gat, E., Azema, N., Perarnau, D., and Durand, J., in Proc. 8th European Conf. on Chemical Vapour Deposition, edited by Hitchman, M. L. and Archer, N. J. (J. Phys. III, Les Ulis, France, 1992, in press).Google Scholar
22.Jean, A., Chaker, M., Diawara, Y., Gat, E., Leung, P. K., Mercier, P. P., Pepin, H., Gujrathi, S., Ross, G. G., and Kieffer, J. C., to be published in J. Appl. Phys. (1992).Google Scholar
23.Guivrac'h, A., Richard, J., Contellec, M. Le, Ligeon, E., and Fontenille, J., J. Appl. Phys. 51, 2167 (1980).Google Scholar
24.Basa, D. K. and Smith, F. W., Thin Solid Films 192, 121 (1990).CrossRefGoogle Scholar
25.Huges, A. E. and Sexton, B. A., J. Elect. Spect. and Relat. Phenom. 50, c5 (1990).Google Scholar
26.Mahan, A. H., Raboisson, P., Williamson, D. L., and Tsu, R., Solar Cells 21, 117 (1987).CrossRefGoogle Scholar
27.Tawada, Y., in Amorphous Semiconductor Technologies and Devices, edited by Hamakawa, Y. (JARECT, OHMSHA Ltd. and North-Holland Publishing Corp., 1983), Vol. 6, p. 148.Google Scholar
28.Beyer, W. and Mell, H., in Disorder Semiconductors, edited by Castner, M. A., Thomas, G. A., and Ovshinsky, S. R. (Plenum Press, New York, 1987) p. 641.CrossRefGoogle Scholar
29.Rynders, S. W., Scheeline, A., and Bohn, P. W., J. Appl. Phys. 69 (5), 2951 (1991).CrossRefGoogle Scholar
30.Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 6 (1977).CrossRefGoogle Scholar
31.Basa, D. K. and Smith, F. W., Thin Solid Films 192, 121 (1990).CrossRefGoogle Scholar
32.Swift, P., Surf, and Interf. Analys. 4, 47 (1982).CrossRefGoogle Scholar
33.Jaegle, A., Kalt, A., Nanse, G., and Peruchetti, J. C., Analysis 9, 252 (1981).Google Scholar
34.Lamontagne, B., Sacher, E., and Wertheimer, M. R., Appl. Surf. Sci. 52, 71 (1991).CrossRefGoogle Scholar
35.Katayama, Y., Usami, K., and Shimada, T., Philos. Mag. B 43, 283 (1981).CrossRefGoogle Scholar
36.Fitzgerald, A. G., Ehenderson, A., Hicks, S. E., Moir, P. A., and Storey, B. E., Surf, and Interf. Analys. 14, 376 (1989).CrossRefGoogle Scholar
37.Pauling, L., The Nature of Chemical Bonds, 3rd ed. (Cornell University Press, Ithaca, NY, 1960), p. 85.Google Scholar
38.Haghiri-Gosnet, A. M., Rousseaux, F., Gat, E., Durand, J., and Flank, A. M., Microelectron. Eng. 17, 215 (1992).CrossRefGoogle Scholar