Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T16:31:27.268Z Has data issue: false hasContentIssue false

Studies of theoretical and experimental precipitation conditions of Y+3, Ba+2, and Cu+2 ions in oxalate-diethylamine media in the preparation of YBa2Cu3Oy superconductor

Published online by Cambridge University Press:  31 January 2011

D.H. Chen
Affiliation:
Department of Chemistry, National Tsing Hua University, Hsinchu, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei, P.O. Box 23-166, Taiwan, Republic of China
S.R. Sheen
Affiliation:
Department of Chemistry, National Tsing Hua University, Hsinchu, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei, P.O. Box 23-166, Taiwan, Republic of China
C.T. Chang
Affiliation:
Department of Chemistry, National Tsing Hua University, Hsinchu, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei, P.O. Box 23-166, Taiwan, Republic of China; and Materials Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31015, Taiwan, Republic of China
C.Y. Shei
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31015, Taiwan, Republic of China
W-M. Hurng
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31015, Taiwan, Republic of China
Get access

Abstract

In the preparation of YBa2Cu3Oy (Y-123) superconductor, the coprecipitation method was frequently used in various solution systems due to advantages such as good homogeneity, low reaction temperature, fine and uniform particle size, easy scale-up, and economical concerns. In this paper, a detailed study of different competitive reactions such as dissociation, precipitation, complex formation, and association involving metal ions, oxalate ion, and diethylamine species is performed. The study aids in understanding the precipitation and yields an optimal coprecipitation condition for the title system. A series of experiments are also conducted which confirm that the as-derived optimal condition may be extensively applied to other systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bednorz, J. G. and Müller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2.Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C. W., Phys. Rev.Lett. 58, 908 (1987).CrossRefGoogle Scholar
3.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
4.Sheng, Z. Z. and Hermann, A. M., Nature 332, 55 (1988).CrossRefGoogle Scholar
5.Wang, X. Z., Henry, M., and Livage, J., Solid State Commun. 64, 881 (1987).CrossRefGoogle Scholar
6.Kaneko, K., Ihara, H., Hirabayashi, M., Terada, N., and Senzaki, K., J. Ipn. Appl. Phys. 26, L734 (1987).CrossRefGoogle Scholar
7.Caillaud, F., Baumard, J-F., and Smith, A., Mater. Res. Bull. XXIII, 1273 (1988).CrossRefGoogle Scholar
8.Hsieh, P. Y., Ye, J., Shi, Z., and Chu, W. K., Mod. Phys. Lett. B 4, 423 (1990).CrossRefGoogle Scholar
9.Vilminot, S., Hadigui, S. El, Derory, A., Drillon, M., Bernier, J. C., Kappler, J. P., Kuentzler, R., and Dossmann, Y., Mater. Res. Bull. XXIII, 521 (1988).Google Scholar
10.Liu, R. S., Chang, C. T., and Wu, P. T., Inorg. Chem. 28,154 (1989).Google Scholar
11.Manthiram, A. and Goodenough, J. B., Nature 329, 701 (1987).CrossRefGoogle Scholar
12.Sheen, S. R., Hsu, Y. J., Chen, D. H., Ho, J. S., Shei, C. Y., and Chang, C. T., Mater. Lett. 10, 489 (1991).CrossRefGoogle Scholar
13.Morgan, D., Marie, M., Luss, D., and Richardson, J. T., J. Am. Ceram. Soc. 73, 3557 (1990).CrossRefGoogle Scholar
14.Khurana, B. S., Tripathi, R. B., Khullar, S. M., Kotnala, R. K., Singh, S., Jain, K., Reddi, B. V., Goel, R. C., and Das, B. K., J. Mater. Res. Sci. Lett. 8, 234 (1989).CrossRefGoogle Scholar
15.Barboux, P., Tarascon, J. M., Greene, L. H., Hull, G. W., and Bagley, B. G., J. Appl. Phys. 63, 2725 (1988).CrossRefGoogle Scholar
16.Murthy, Y. S. N., Gopalan, R., Raoot, S., Rajasekhran, T., Ravi, S., and Bai, V. Seshu, Mater. Lett. 9, 154 (1990).CrossRefGoogle Scholar
17.Monde, T., Kozuka, H. and Sakka, S., Chem. Lett., 287 (1988).CrossRefGoogle Scholar
18.Nonaka, T., Kaneko, K., Hasegawa, T., Kishio, K., Takahashi, Y., Kobayashi, K., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 25, L867 (1988).CrossRefGoogle Scholar
19.Accibal, M. A., Draxon, J. W., Gabor, A. H., Gladfelter, W. L., Hassler, B. A., and McCartney, M. L., Better Ceramics Through Chenkstry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 401.Google Scholar
20.Hirano, S., Hayashi, T., aney, R. H., Miura, M., and Tomonaga, H., Chem. Lett., 665 (1988).CrossRefGoogle Scholar
21.Katayama, S. and Sekine, M., J. Mater. Res. 5, 683 (1990).Google Scholar
22.Umeda, T., Kozuka, H., and Sakka, S., Adv. Ceram. Mater. 3, 520 (1988).Google Scholar
23.Nakahara, S., Fisanick, G. J., Yan, M. F., Van Dover, R. B., Boone, T., and Moore, R., in High Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988).Google Scholar
24.Smith, R. M. and Martell, A. E., Critical Stability Costants (Plenum Press, New York and London).Google Scholar
25.Inczedy, J., Analytical Applications of Complex Equilibrium (Akademiai Kiado, Budapest).Google Scholar