Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T16:27:05.379Z Has data issue: false hasContentIssue false

Solution deposition processing and electrical properties of Ba(Ti1−xSnx)O3 thin films

Published online by Cambridge University Press:  31 January 2011

Ki Hyun Yoon
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul 120-749, Korea
Ji Hoon Park
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul 120-749, Korea
Jae Hyuk Jang
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul 120-749, Korea
Get access

Abstract

Ba(Ti1−xSnx)O3 (0 ≤ x ≤ 0.3) thin films were deposited on a platinized silicon substrate by a solution deposition process with methoxyethanol, water, and propylene glycol as solvents. Dielectric properties and current–voltage characteristics of the thin films were investigated in conjunction with phase evolution and microstructures by varying heating temperatures and Sn contents (x). Thin films annealed above 700 °C showed a pure perovskite phase with nanoscaled grains (20–30 nm). The dielectric constant of the thin films depended on the Sn content and showed a maximum value of 330 at x = 0.15. The leakage current behavior of an optimum composition corresponding to x = 0.15 was examined by correlating with charge transport mechanisms. Schottky emission was found to be predominant at voltages less than 6.8 V, and Fowler–Nordheim tunneling appeared to be responsible above 6.8 V. The Schottky barrier of the Ba(Ti0.85Sn0.15)O3–Pt interface was determined to be 1.49 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sayer, M. and Sreenivas, K., Science 247, 1056 (1990).CrossRefGoogle Scholar
2.Parker, L.H. and Tausch, A.F., IEEE Circuits Devices 6, 17 (1990).CrossRefGoogle Scholar
3.Tang, K.S., Lau, W.S., and Samudra, G.S., IEEE Circuits Devices 5, 27 (1997).CrossRefGoogle Scholar
4.Tsukada, M., Mukaida, M., and Miyazawa, S., Jpn. J. Appl. Phys. 35, 4908 (1996).CrossRefGoogle Scholar
5.Oh, K., Uchino, K., and Cross, L.E., J. Am. Ceram. Soc. 77, 2809 (1991).CrossRefGoogle Scholar
6.Lin, J.N. and Wu, T.B., J. Appl. Phys. 68, 985 (1990).CrossRefGoogle Scholar
7.Yasuda, N., Ohwa, H., and Asano, S., Jpn. J. Appl. Phys. 35, 5099 (1996).CrossRefGoogle Scholar
8.Yasuda, N., Ohwa, H., Arai, K., Iwata, M., and Ishibashi, Y., J. Mater. Sci. Lett. 16, 1315 (1997).CrossRefGoogle Scholar
9.Novosil'tsev, N.S., Khodakov, A.L., Sov. Tech. Phys. 1, 306 (1956).Google Scholar
10.Kuwata, J., Fujita, Y., Matsuoka, T., Tohda, T., Nishikawa, M., and Abe, A., Jpn. J. Appl. Phys. 24, 413 (1985).CrossRefGoogle Scholar
11.Schwartz, R.W., Boyle, T.J., Lockwood, S.J., Sinclair, M.B., Dimos, D., and Buchheit, C.D., Integ. Ferroelectrics 7, 259 (1995).CrossRefGoogle Scholar
12.Tohge, N., Takahashi, S., and Minami, T., J. Am. Ceram. Soc. 74, 67 (1991).CrossRefGoogle Scholar
13.Sedlar, M., Sayer, M., and Weaver, L., J. Sol-Gel Sci. Tech. 5, 201 (1995).CrossRefGoogle Scholar
14.Kamalasanan, M.N. and Chandra, S., Thin Solid Films 288, 112 (1996).CrossRefGoogle Scholar
15.Tahan, D.M., Safari, A., and Klein, L.C., J. Am. Ceram. Soc. 79, 1593 (1996).CrossRefGoogle Scholar
16.Park, J.H., Kang, D.H., and Yoon, K.H., J. Am. Ceram. Soc. (in press).Google Scholar
17.Othmer, D.F., Kirk, R.E., and Mark, H.F., Kirk-Orthmer Encyclopedia of Chemical Technology, edited by Standen, A. (Interscience Publishers, New York, 1963), Vol I, pp. 833.Google Scholar
18.Kamalasanan, M.N., Kumar, N.D., and Chandra, S., J. Appl. Phys. 76, 4603 (1994).CrossRefGoogle Scholar
19.Zhigang, Z. and Gang, Z., Ferroelectrics 101, 43 (1990).CrossRefGoogle Scholar
20.Artl, G., Hennings, D., and De With, G., J. Appl. Phys. 58, 1619 (1985).Google Scholar
21.Frey, M.H. and Payne, D.A., Appl. Phys. Lett. 63, 2753 (1993).CrossRefGoogle Scholar
22.Peng, C-J. and Krupanidhi, S.B., J. Mater. Res. 10, 708 (1995).CrossRefGoogle Scholar
23.Hwang, C.S., Lee, B.T., Park, S.O., Kim, J.W., Cho, H.J., Kang, C.S., Horii, H., Lee, S.I., and Lee, M.Y., Integr. Ferroelectrics 13, 157 (1996).CrossRefGoogle Scholar
24.Fukuda, Y., Aoki, K., Numata, K., and Nishimura, A., Jpn. J. Appl. Phys. 33, 5255 (1994).CrossRefGoogle Scholar
25.Chen, H., Tsaur, S., and Lee, J.Y., Jpn. J. Appl. Phys. 37, 4056 (1998).CrossRefGoogle Scholar
26.Li, P. and Lu, T.M., Phys. Rev. B 43, 14261 (1991).CrossRefGoogle Scholar
27.Lenzlinger, M. and Snow, E.H., J. Appl. Phys. 40, 278 (1969).CrossRefGoogle Scholar
28.Dietz, G.W., Antpohler, W., Klee, M., and Waser, R., J. Appl. Phys. 78, 6113 (1995).CrossRefGoogle Scholar