Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T15:05:27.283Z Has data issue: false hasContentIssue false

Sintering of hierarchically structured ZnO

Published online by Cambridge University Press:  31 January 2011

Markus König*
Affiliation:
Institut für Materialwissenschaft, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Sören Höhn
Affiliation:
Fraunhofer-Institut für Keramische Technologien und Systeme, IKTS Dresden, 01277 Dresden, Germany
Rudolf Hoffmann
Affiliation:
Fachbereich Chemie, Eduard Zintl-Institut, Anorganische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Jens Suffner
Affiliation:
Institut für Materialwissenschaft, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Stefan Lauterbach
Affiliation:
Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Ludwig Weiler
Affiliation:
Institut für Materialwissenschaft, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Olivier Guillon
Affiliation:
Institut für Materialwissenschaft, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Jürgen Rödel
Affiliation:
Institut für Materialwissenschaft, Technische Universität Darmstadt, 64287 Darmstadt, Germany
*
a)Address all correspondence to this author. e-mail: koenig@ceramics.tu-darmstadt.de
Get access

Abstract

Hierarchically structured zinc oxide was prepared from zinc acetylacetonate by a microwave-assisted process. The zinc oxide formed nanoparticles that are packed in substructured spherical agglomerates with a diameter of 0.5 μm. Nitrogen adsorption, x-ray diffraction, and dilatometry were used to investigate the densification. Ion beam method was applied to prepare cross sections and enable microstructural analysis. Three regimes of microstructural evolution were identified on different scales during sintering. In the first regime, nanoparticles changed morphology and densification occurred only in the interiors of the agglomerates. In the second regime, agglomerates became hollow and built necks. Simultaneously, densification set in on the macroscopic scale. A drastic homogenization of the microstructure was observed that marked the beginning of the third regime, where densification and grain growth occurred.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klingshirn, C.: ZnO: From basics towards applications. Phys. Status Solidi B 244, (9)3027 (2007)CrossRefGoogle Scholar
2.Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, (4)041301 (2005)CrossRefGoogle Scholar
3.Clarke, D.R.: Varistor ceramics. J. Am. Ceram. Soc. 82, (3)485 (1999)CrossRefGoogle Scholar
4.Eriksson, J., Khranovskyy, V., Söderlind, F., Käll, P-O., Yakimova, R., Spetz, A.L.: ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities. Sens. Actuators, B 137, (1)94 (2009)CrossRefGoogle Scholar
5.Polarz, S., Roy, A., Lehmann, M., Driess, M., Kruis, F.E., Hoffmann, A., Zimmer, P.: Structure-property-function relationships in nanoscale oxide sensors: A case study based on zinc oxide. Adv. Funct. Mater. 17, (8)1385 (2007)CrossRefGoogle Scholar
6.Chopra, K.L., Major, S., Panya, D.K.: Transparent conductors—A status review. Thin Solid Films 102, (1)1 (1983)CrossRefGoogle Scholar
7.Ellmer, K., Klein, A., Rech, B.: Transparent Conductive Zinc Oxide Basics and Applications in Thin Film Solar Cells (Springer-Series in Materials Science, Berlin, Germany 2008)CrossRefGoogle Scholar
8.Zhou, H-M., Yi, D-Q., Yu, Z-M., Xiao, L-R., Li, J.: Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties. Thin Solid Films 515, (17)6909 (2007)CrossRefGoogle Scholar
9.Fortunato, E., Goncalves, A., Pimentel, A., Barquinha, P., Goncalves, G., Pereira, L., Ferreira, I., Martins, R.: Zinc oxide, a multifunctional material: From material to device applications. Appl. Phys. A 96, (1)197 (2009)CrossRefGoogle Scholar
10.Schneider, J.J., Hoffmann, R.C., Engstler, J., Soffke, O., Jaegermann, W., Issanin, A., Klyszcz, A.: A printed and flexible field-effect transistor device with nanoscale zinc oxide as active semiconductor material. Adv. Mater. 20, (18)3383 (2008)CrossRefGoogle Scholar
11.Meyers, S.T., Anderson, J.T., Hung, C.M., Thompson, J., Wager, J.F., Keszler, D.A.: Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 130, (51)17603 (2008)CrossRefGoogle ScholarPubMed
12.Inoguchi, M., Suzuki, K., Tanaka, N., Kageyama, K., Takagi, H.: Structural and optical properties of nanocrystalline ZnO thin films derived from clear emulsion of monodispersed ZnO nanocrystals. J. Mater. Res. 24, (9)2243 (2009)CrossRefGoogle Scholar
13.Qiu, Y.C., Chen, W., Yang, S.H., Zhang, B., Zhang, X.X., Zhong, Y.C., Wong, K.S.: Hierarchical hollow spheres of ZnO and Zn1−xCoxO: Directed assembly and room-temperature ferromagnetism. Cryst. Growth Des. 10, (1)177 (2009)CrossRefGoogle Scholar
14.Aimable, A., Buscaglia, M.T., Buscaglia, V., Bowen, P.: Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. J. Eur. Ceram. Soc. 30, (2)591 (2010)CrossRefGoogle Scholar
15.Gupta, T.K., Coble, R.L.: Sintering of ZnO: I, Densification and grain growth. J. Am. Ceram. Soc. 51, (9)521 (1968)CrossRefGoogle Scholar
16.Gupta, T.K., Coble, R.L.: Sintering of ZnO: II, Density decrease and pore growth during final stage of process. J. Am. Ceram. Soc. 51, (9)525 (1968)CrossRefGoogle Scholar
17.Whittemore, O.J., Varela, J.A.: Initial sintering of ZnO. J. Am. Ceram. Soc. 64, (11)C154 (1981)CrossRefGoogle Scholar
18.Ewsuk, K.G., Ellerby, D.T., DiAntonio, C.B.: Analysis of nanocrystalline and microcrystalline ZnO sintering using master sintering curves. J. Am. Ceram. Soc. 89, (6)2003 (2006)CrossRefGoogle Scholar
19.Hynes, A.P., Doremus, R.H., Siegel, R.W.: Sintering and characterization of nanophase zinc oxide. J. Am. Ceram. Soc. 85, (8)1979 (2002)CrossRefGoogle Scholar
20.Qin, X.J., Shao, G.J., Liu, R.P., Wang, W.K.: Sintering characteristics of nanocrystalline ZnO. J. Mater. Sci. 40, (18)4943 (2005)CrossRefGoogle Scholar
21.Gräf, I.: Ion etching—State of the art and perspectives for contrasting the microstructure of ceramic and metallic materials. Part I: Development and physics in ion etching. Prakt. Metallogr./–Pract. Metallogr. 35, (5)235 (1998)CrossRefGoogle Scholar
22.Schneider, J.J., Hoffmann, R.C., Engstler, J., Klyszcz, A., Erdem, E., Jakes, P., Eichel, R-A., Pitta-Bauermann, L., Bill, J.: Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide. Chem. Mater. 22, (7)2203 (2010)CrossRefGoogle Scholar
23.Langford, J.I., Wilson, A.J.C.: Scherrer after 60 years—Survey and some new results in determination of crystallite size. J. Appl. Crystallogr. 11 (Apr) 102 (1978)CrossRefGoogle Scholar
24.Rödel, J., Glaeser, A.M.: High-temperature healing of lithographically introduced cracks in sapphire. J. Am. Ceram. Soc. 73, (3)592 (1990)CrossRefGoogle Scholar
25.Louër, D., Vargas, R., Auffrédic, J-P.: Morphological analysis and growth of crystallites during annealing of ZnO. J. Am. Ceram. Soc. 67, (2)136 (1984)CrossRefGoogle Scholar
26.Auffrédic, J-P., Boultif, A., Langford, J.I., Louër, D.: Early stages of crystallite growth of ZnO obtained from an oxalate precursor. J. Am. Ceram. Soc. 78, (2)323 (1995)CrossRefGoogle Scholar
27.Kang, S-J.L.: Sintering Densification, Grain Growth, and Microstructure (Elsevier Butterworth Heinemann, Oxford, UK 2005)Google Scholar
28.Sudre, O., Lange, F.F.: The effect of inclusions on densification: III, The desintering phenomenon. J. Am. Ceram. Soc. 75, (12)3241 (1992)CrossRefGoogle Scholar
29.Lange, F.F.: Sinterability of agglomerated powders. J. Am. Ceram. Soc. 67, (2)83 (1984)CrossRefGoogle Scholar
30.Petzow, G., Exner, H.E.: Particle rearrangement in solid state sintering. Z. Metallkd. 67, (9)611 (1976)Google Scholar
31.Exner, H.E., Müller, C.: Particle rearrangement and pore space coarsening during solid-state sintering. J. Am. Ceram. Soc. 92, (7)1384 (2009)CrossRefGoogle Scholar