Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T18:07:45.763Z Has data issue: false hasContentIssue false

Simulated growth and microstructure of DyBa2Cu3O7−x with and without Dy2BaCuO5 addition

Published online by Cambridge University Press:  03 March 2011

N. Vandewalle
Affiliation:
S.U.P.R.A.S., Institut de Physique B5, Université de Liège, Sart Tilman, B-4000 Liége, Belgium
R. Cloots
Affiliation:
S.U.P.R.A.S., Institut de Chimie B6, Université de Liège, Sart Tilman, B-4000 Liège, and S.U.P.R.A.S., Institut d'Electricité Montefiore B28, Université de Liège, Sart Tilman, B-4000 Liège, Belgium
M. Ausloos
Affiliation:
S.U.P.R.A.S., Institut de Physique B5, Université de Liège, Sart Tilman, B-4000 Liège, Belgium
Get access

Abstract

We present optical observations of magnetically melt-textured DyBa2Cu3O7−x with and without 20 wt. % excess of Dy2BaCuO5. From these observations, we propose some kinetic mechanism of the growth of 123 compounds. Kinetic processes can be simulated on computers. Two (very) simple models derived from the well-known Eden model are presented. They simulate the growth of the grain front. The simulated patterns agree with the observations. The microstructure of such materials cannot be explained by thermodynamic and chemical considerations alone, but explanations must include the kinetics of the growth front as well. From our observations, we conclude that the growth probability ratios g110/g100 and g100/g001 are of the order of 10 and 50, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
2Holloway, A., McCallum, R.W., and Arrasmith, S. R., J. Mater. Res. 8, 727 (1993).CrossRefGoogle Scholar
3De Rango, P., Lees, M. R., Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P., and Pernet, M., Nature 349, 770 (1991).CrossRefGoogle Scholar
4Lees, M. R., Bourgault, D., De Rango, P., Lejay, P., Sulpice, A., and Tournier, R., Philos. Mag. B 65, 1395 (1992).CrossRefGoogle Scholar
5Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
6Kim, C-J., Kim, K-B., Chang, I-S., Won, D-Y., Moon, H-C., and Suhr, D-S., J. Mater. Res. 8, 699 (1993).CrossRefGoogle Scholar
7Fujimoto, H., Murakami, M., and Koshizuka, N., Physica C 203, 103 (1992).CrossRefGoogle Scholar
8Cloots, R., Rulmont, A., Hannay, C., Godelaine, P. A., Vanderschueren, H. W., Regnier, P., and Ausloos, M., Appl. Phys. Lett. 61, 2718 (1992).CrossRefGoogle Scholar
9Hannay, C., Cloots, R., and Ausloos, M., Solid State Commun. 83, 349 (1992).CrossRefGoogle Scholar
10Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbush, P. D., and Burns, S. J., Physica C 210, 197 (1993).CrossRefGoogle Scholar
11Salama, K. and Lee, D. F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
12Jin, S., Kammlott, G. W., Tiefel, T. H., and Chen, S. K., Physica C 198, 333 (1992).CrossRefGoogle Scholar
13Izumi, T. and Shiohara, Y., J. Mater. Res. 7, 16 (1992).CrossRefGoogle Scholar
14Pellerin, N., Odier, P., Simon, P., and Chateigner, D., Physica C 222, 133 (1994).CrossRefGoogle Scholar
15Kim, C-J., Lai, S. H., and McGinn, P. J., Mater. Lett. 19, 185 (1994).CrossRefGoogle Scholar
16Herrmann, H. J., Phys. Rep. 136, 153 (1986).CrossRefGoogle Scholar
17Pennycook, S. J., Chisholm, M. F., Jesson, D. E., Feenstra, R., Zhu, S., Zheng, X.-Y., and Lowndes, D.J., Physica C 202, 1 (1992).CrossRefGoogle Scholar
18Julien, R. and Botet, R., J. Phys. A 18, 2279 (1985).CrossRefGoogle Scholar
19Meakin, P., Phys. Rep. 235, 189 (1993).CrossRefGoogle Scholar
20Barker, G. C. and Grimson, M. J., J. Phys. A 27, 653 (1994).CrossRefGoogle Scholar
21Witten, T. A. and Sander, L. M., Phys. Rev B 27, 5686 (1983).CrossRefGoogle Scholar
22Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992); J. Cryst. Growth 128, 757 (1993).CrossRefGoogle Scholar
23Bateman, C. A., Zhang, L., Chen, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
24Alexander, K. B., Goyal, A., Kroeger, D. M., Selvamanickam, V., and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
25Ausloos, M., Vandewalle, N., and Cloots, R., Europhys. Lett. 24, 629 (1993).CrossRefGoogle Scholar