Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T00:48:13.653Z Has data issue: false hasContentIssue false

Screen-printed Cu3BiS3-polyacrylic Acid Composite Coatings

Published online by Cambridge University Press:  31 January 2011

H. Hu
Affiliation:
Departamento de Materiales Solares, Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco 62580, Morelos, México
O. Gomez-Daza
Affiliation:
Departamento de Materiales Solares, Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco 62580, Morelos, México
P. K. Nair
Affiliation:
Departamento de Materiales Solares, Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco 62580, Morelos, México
Get access

Abstract

A technique for preparing electrically conductive coatings of Cu3BiS3 powder in polyacrylic acid matrix is presented. Bi2S3 powder obtained by chemical precipitation was introduced into a freshly prepared CuS chemical deposition bath. After the initial nucleation period, CuS started to deposit on the Bi2S3 surface. The as-obtained CuS–Bi2S3 powder was mixed with polyacrylic acid aqueous solution, and the resulting mixture was used as a paste to form a screen-printed composite coating. Up to 200 °C the film behaves like a simple CuS film; the sheet resistance is around 100 and the crystallized phase in the composite is CuS (Covellite). When the temperature is equal or higher than 250 °C, atomic diffusion at the CuS–Bi2S3 interface is promoted, leading to the formation of the ternary compound Cu3BiS3 (Wittichenite) in the composite film. The formation of the compound depends on the temperature, relative abundance of the Bi2S3 and CuS components in the CuS–Bi2S3 pigment, as well as on the annealing atmosphere.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nuffield, E. W., Econ. Geol. 42, 147 (1947).CrossRefGoogle Scholar
2.Kocman, V. and Nuffield, E. W., Acta Crystallogr. B29, 2528 (1973).CrossRefGoogle Scholar
3.Nair, P. K., Huang, L., Nair, M. T. S., Hailin Hu, Meyers, E. A., and Zingaro, R. A., J. Mater. Res. 12, 651 (1997).CrossRefGoogle Scholar
4.Nair, P. K., Campos, J., Sanchez, A., Baños, L., and Nair, M. T. S., Semicond. Sci. Technol. 6, 393 (1991).CrossRefGoogle Scholar
5.Nair, M. T. S. and Nair, P. K., Semicond. Sci. Technol. 5, 1225 (1990).CrossRefGoogle Scholar
6.Nair, P. K., Nair, M. T. S., Pathirana, H. M. K. K., Zingaro, R. A., and Meyers, E. A., J. Electrochem. Soc. 140, 754 (1993).CrossRefGoogle Scholar
7.Sebastian, P. J., Gomez-Daza, O., Campos, J.. Baños, L., and Nair, P. K., Solar Energy Mater. Solar Cells 32, 159 (1994).CrossRefGoogle Scholar
8.Hu, H., Campos, J., and Nair, P. K., J. Mater. Res. 11, 739 (1996).CrossRefGoogle Scholar
9.Hu, H., Gomez-Daza, O., and Baños, L., Semicond. Sci. Technol. (1997).Google Scholar
10.CRC Handbook of Chemistry and Physics, 66th ed. (CRC Press, Boca Raton, FL, 1985).Google Scholar
11.Chopra, K. L., Kainthla, R. C., Pandya, D. K., and Thakoor, A. P., Physics of Thin Films, Vol. 12 (Academic, New York, 1982), p. 167.Google Scholar