Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T01:10:27.424Z Has data issue: false hasContentIssue false

Role of particle evaporation during synthesis of lead oxide by aerosol decomposition

Published online by Cambridge University Press:  31 January 2011

Shirley W. Lyons
Affiliation:
Chemical and Nuclear Engineering Department, Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131
Yun Xiong
Affiliation:
Chemical and Nuclear Engineering Department, Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131
Timothy L. Ward
Affiliation:
Chemical and Nuclear Engineering Department, Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131
Toivo T. Kodas
Affiliation:
Chemical and Nuclear Engineering Department, Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131
Sotiris E. Pratsinis
Affiliation:
Department of Chemical Engineering, Center for Aerosol Processes, University of Cincinnati, Cincinnati, Ohio 45221
Get access

Abstract

The role of product evaporation during lead monoxide (PbO) powder generation by aerosol decomposition (spray pyrolysis) was investigated at various temperatures in a flow reactor. Particles consisting of phase pure litharge and a mixture of litharge and massicot were formed with the dominant phase changing from litharge to massicot as the pyrolysis temperature was increased. Scanning electron microscopy showed particles produced at lower temperatures had a lumpy surface morphology and at higher temperatures appeared to be solid, indicated by the faceted surfaces and a plate-like morphology. Evaporative losses of PbOx, to the reactor walls were observed due to the substantial vapor pressure of PbOx. A simple model was developed that accounts for particle evaporation and mass transfer of lead oxide vapor to the reactor walls. This model suggested that the loss of lead oxide to the reactor walls was limited by diffusional transport of lead oxide vapor to the reactor walls.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jubb, N.J. and Bowen, H.K., J. Mater. Sci. 22 (5), 1963 (1987).CrossRefGoogle Scholar
2Kodas, T.T., Adv. Mater. 6, 180 (1989).Google Scholar
3Gardner, T.J. and Messing, G.L., Ceram. Bull. 63 (12), 1498 (1984).Google Scholar
4Zhang, S. -C., Messing, G.L., and Borden, M., J. Am. Ceram. Soc. 73 (1), 63 (1990).Google Scholar
5Ling, H.C., Jackson, A.M., Yan, M.F., and Rhodes, W.W., J. Mater. Res. 5, 629 (1990).Google Scholar
6Kingon, A. I., Terblanche, P. J., and Clark, J. B., Mater. Sci. Eng. 71, 391 (1985).Google Scholar
7Ward, T.L., Lyons, S.W., Kodas, T.T., Brynestad, J., and Kroeger, D.M., submitted to J. Mater. Res. (1991).Google Scholar
8Park, S. and Im, H. B., J. Mater. Sci. 25 (1), 441 (1990).CrossRefGoogle Scholar
9Rossetti, G.A. Jr., Burger, J.L., and Sisson, R.D. Jr., J. Am. Ceram. Soc. 72 (10), 1811 (1989).CrossRefGoogle Scholar
10Kato, A. and Hirata, Y., Memoirs of the Faculty of Engineering, Kyushu University 45 (4), 251 (1985).Google Scholar
11Liu, T. -Q., Sakurai, O., Mizutani, N., and Kato, M., J. Mater. Sci. 21, 3698 (1986).CrossRefGoogle Scholar
12Dayal, R., Prasad, C.D., and Lai, R., Mater. Res. Bull. XXV (11), 1339 (1990).CrossRefGoogle Scholar
13Zhilun, G., Longtu, L., Suhua, G., and Xiaowen, Z., J. Am. Ceram. Soc. 72 (3), 486 (1989).CrossRefGoogle Scholar
14Chen, S. -Y., Cheng, S Y., and Wang, C. -M., J. Am. Ceram. Soc. 73 (2), 232 (1990).CrossRefGoogle Scholar
15Lin, W.J., Wang, L.C., Lu, H.B., Lin, I.N., Young, C.C., Lin, W.Y., Yang, S.J., and Hsu, S.E., Jpn. J. Appl. Phys. 29 (5), 846 (1990).CrossRefGoogle Scholar
16Mizuno, M., Endo, H., Tsuchiya, J., Kijima, N., Sumiyama, A., and Oguri, Y., Jpn. J. Appl. Phys. 27 (7), L1225 (1988).CrossRefGoogle Scholar
17Tohge, N., Tatsumisago, M., Minami, T., Okuyama, K., Arai, K., Inada, Y., and Kousaka, Y., J. Mater. Sci.: Materials in Electronics 1, 46 (1990).Google Scholar
18Ibara, Y., Nasu, H., Imura, T., and Osaka, Y., Jpn. J. Appl. Phys. 28 (1), L37 (1989).CrossRefGoogle Scholar
19White, W.B., Dachille, F., and Roy, R., J. Am. Ceram. Soc. 44 (4), 170 (1961).CrossRefGoogle Scholar
20CRC Handbook of Chemistry and Physics, 67th ed., edited by Weast, R. C. (CRC Press, Inc., Boca Raton, FL, 1986).Google Scholar
21Sorrell, C. A., J. Am. Ceram. Soc. 56 (12), 613 (1973).CrossRefGoogle Scholar
22Anderson, J.S. and Sterns, M., J. Inorg. Nucl. Chem. 11, 272 (1959).CrossRefGoogle Scholar
23Powder Diffraction File Inorganic Materials, edited by (JCPDS International Centre for Diffraction Data, Swarthmore, PA, 1979).Google Scholar
24Charlesworth, D. H. and Marshall, W. R. Jr., A.I.Ch. E. Journal 6 (1),9 (1960).CrossRefGoogle Scholar
25Leong, K.H., J. Aerosol Sci. 12 (5), 417 (1981).CrossRefGoogle Scholar
26Chadda, S., Ward, T.L., Carim, A., Kodas, T.T., Ott, K., and Kroeger, D., J. Aerosol Sci. 22 (5), 601 (1991).CrossRefGoogle Scholar
27Ortega, J., Kodas, T.T., Chadda, S., Smith, D.M., Ciftcioglu, M., and Brennan, J.E., Chem. Mater. 3, 746 (1991).CrossRefGoogle Scholar
28Kaito, C. and Shiojiri, M., Jpn. J. Appl. Phys. 21 (10), 1404 (1982).CrossRefGoogle Scholar
29Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley & Sons, New York, 1960), p. 469.Google Scholar
30Pratsinis, S. E., Kodas, T. T., and Sood, A., Ind. Eng. Chem. Res. 27 (1), 105 (1988).CrossRefGoogle Scholar
31Cussler, E. L., Diffusion (Cambridge University Press, New York, 1984).Google Scholar
32Ott, W. R. and McLaren, M. G., J. Am. Ceram. Soc. 53 (7), 374 (1970).CrossRefGoogle Scholar
33Roth, R. S., Negas, T., and Cook, L. P., Phase Diagrams for Ceramists, edited by Smith, G. (The American Ceramic Society, Westerville, OH, 1981), Vol. IV, p. 107.Google Scholar
34Wakabayashi, H. and Terai, R., Glass Technol. 24 (6), 312 (1983).Google Scholar
35Lyons, S.W., Metal Oxide Particle Production by Aerosol Decomposition of Solutions, M.S. Thesis, University of New Mexico, 1992.Google Scholar
36Friedlander, S.K., Smoke, Dust and Haze (John Wiley & Sons, New York, 1977), p. 246.Google Scholar
37Davis, E.J. and Liao, S.C., J. Colloid Interf. Sci. 50 (3), 488 (1975).CrossRefGoogle Scholar
38Kodas, T. T., Sood, A., and Pratsinis, S. E., Powder Technol. 50, 47 (1987).CrossRefGoogle Scholar
39Incropera, F.P. and DDeWitt, .P., Fundamentals of Heat and Mass Transfer, 2nd ed. (John Wiley &, Sons, New York, 1985).Google Scholar
40IMSL, User's Manual (Math/Library, Version 1.1, Houston, TX, 1989).Google Scholar