Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T11:05:01.387Z Has data issue: false hasContentIssue false

Recent progress in characterization of the core–shell structure of black titania

Published online by Cambridge University Press:  12 March 2019

Mengkun Tian*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA; and Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
Chenze Liu
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Jingxuan Ge
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
David Geohegan
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Gerd Duscher
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA; and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Gyula Eres*
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
*
a)Address all correspondence to these authors. e-mail: mtian37@gatech.edu
b)e-mail: eresg@ornl.gov
Get access

Abstract

The recent observation of spectacular photocatalytic activity enhancements generated tremendous interest in the synthesis, properties, and potential applications of black titania. Most black titania are core–shell structures consisting of a perfect crystalline core surrounded by a defective surface shell. Because the properties are attributed to the defective shell, it is particularly important, but very challenging, to obtain atomic structure information of the core, the shell, and the core–shell relationship on a single particle level. While the role of various synthesis approaches for producing black titania with different properties has been extensively reviewed, this review focuses on understanding the structure–functionality relationship in black titania on a single particle level. We start by introducing the crystal and electronic band structure of different TiO2 phases, followed by the discussion of particle size effects, the origin of lattice distortions, and phase control by synthesis, and concluding with the discussion of crystalline order formation and evolution creating the defective shell.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).CrossRefGoogle Scholar
Song, Y., Li, J., and Wang, C.: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).CrossRefGoogle Scholar
Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).CrossRefGoogle ScholarPubMed
Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).CrossRefGoogle ScholarPubMed
Liu, X., Zhu, G., Wang, X., Yuan, X., Lin, T., and Huang, F.: Progress in black titania: A new material for advanced photocatalysis. Adv. Energy Mater. 6, 1600452 (2016).CrossRefGoogle Scholar
Wang, B., Shen, S., and Mao, S.S.: Black TiO2 for solar hydrogen conversion. J. Materiomics. 3, 96 (2017).CrossRefGoogle Scholar
Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., Xu, F., Huang, F., Lin, J., Xie, X., and Jiang, M.: H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23, 5444 (2013).CrossRefGoogle Scholar
Zheng, Z., Huang, B., Lu, J., Wang, Z., Qin, X., Zhang, X., Dai, Y., and Whangbo, M.H.: Hydrogenated titania: Synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733 (2012).CrossRefGoogle ScholarPubMed
Zeng, L., Song, W., Li, M., Zeng, D., and Xie, C.: Catalytic oxidation of formaldehyde on surface of H–TiO2/H–C–TiO2 without light illumination at room temperature. Appl. Catal., B 147, 490 (2014).CrossRefGoogle Scholar
Yang, C., Wang, Z., Lin, T., Yin, H., Lu, X., Wan, D., Xu, T., Zheng, C., Lin, J., Huang, F., Xie, X., and Jiang, M.: Core–shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 135, 17831 (2013).CrossRefGoogle ScholarPubMed
Hoang, S., Berglund, S.P., Hahn, N.T., Bard, A.J., and Mullins, C.B.: Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 134, 3659 (2012).CrossRefGoogle Scholar
Wang, W., Lu, C., Ni, Y., Su, M., and Xu, Z.: A new sight on hydrogenation of F and N–F doped {001} facets dominated anatase TiO2 for efficient visible light photocatalyst. Appl. Catal., B 127, 28 (2012).CrossRefGoogle Scholar
Wang, W., Ni, Y., Lu, C., and Xu, Z.: Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets. Appl. Surf. Sci. 290, 125 (2014).CrossRefGoogle Scholar
Yang, Y., Kao, L.C., Liu, Y., Sun, K., Yu, H., Guo, J., Liou, S.Y.H., and Hoffmann, M.R.: Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal. 8, 4278 (2018).CrossRefGoogle ScholarPubMed
Lin, T., Yang, C., Wang, Z., Yin, H., , X., Huang, F., Lin, J., Xie, X., and Jiang, M.: Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ. Sci. 7, 967 (2014).CrossRefGoogle Scholar
Song, H., Li, C., Lou, Z., Ye, Z., and Zhu, L.: Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustainable Chem. Eng. 5, 8982 (2017).CrossRefGoogle Scholar
Wan, N., Xing, Z., Kuang, J., Li, Z., Yin, J., Zhu, Q., and Zhou, W.: Oxygen vacancy-mediated efficient electron-hole separation for CNS-tridoped single crystal black TiO2(B) nanorods as visible-light-driven photocatalysts. Appl. Surf. Sci. 457, 287 (2018).CrossRefGoogle Scholar
Liu, X., Gao, S., Xu, H., Lou, Z., Wang, W., Huang, B., and Dai, Y.: Green synthetic approach for Ti3+ self-doped TiO(2−x) nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5, 1870 (2013).CrossRefGoogle ScholarPubMed
Panomsuwan, G., Watthanaphanit, A., Ishizaki, T., and Saito, N.: Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 17, 13794 (2015).CrossRefGoogle ScholarPubMed
Pei, Z., Ding, L., Lin, H., Weng, S., Zheng, Z., Hou, Y., and Liu, P.: Facile synthesis of defect-mediated TiO2−x with enhanced visible light photocatalytic activity. J. Mater. Chem. A 1, 10099 (2013).CrossRefGoogle Scholar
Fan, C., Chen, C., Wang, J., Fu, X., Ren, Z., Qian, G., and Wang, Z.: Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 5, 11712 (2015).CrossRefGoogle ScholarPubMed
Szot, K., Rogala, M., Speier, W., Klusek, Z., Besmehn, A., and Waser, R.: TiO2—A prototypical memristive material. Nanotechnology 22, 254001 (2011).CrossRefGoogle Scholar
Zhang, K. and Park, J.H.: Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. J. Phys. Chem. Lett. 8, 199 (2017).CrossRefGoogle ScholarPubMed
Tan, H.Q., Zhao, Z., Niu, M., Mao, C.Y., Cao, D.P., Cheng, D.J., Feng, P.Y., and Sun, Z.C.: A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6, 10216 (2014).CrossRefGoogle ScholarPubMed
Cromer, D.T. and Herrington, K.: The structures of anatase and rutile. J. Am. Chem. Soc. 77, 4708 (1955).CrossRefGoogle Scholar
Marchand, R., Brohan, L., and Tournoux, M.: TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15, 1129 (1980).CrossRefGoogle Scholar
Latroche, M., Brohan, L., Marchand, R., and Tournoux, M.: New hollandite oxides: TiO2(H) and K0.06TiO2. J. Solid State Chem. 81, 78 (1989).CrossRefGoogle Scholar
Akimoto, J., Gotoh, Y., Oosawa, Y., Nonose, N., Kumagai, T., and Aoki, K.: Topotactic oxidation of ramsdellite-type Li0.5TiO2, a new polymorph of titanium dioxide: TiO2(R). J. Solid State Chem. 113, 27 (1994).CrossRefGoogle Scholar
Simons, P.Y. and Dachille, F.: The structure of TiO2II, a high-pressure phase of TiO2. Acta Crystallogr. 23, 334 (1967).CrossRefGoogle Scholar
Sato, H., Endo, S., Sugiyama, M., Kikegawa, T., Shimomura, O., and Kusaba, K.: Baddeleyite-type high-pressure phase of TiO2. Science 251, 786 (1991).CrossRefGoogle ScholarPubMed
Mattesini, M., de Almeida, J.S., Dubrovinsky, L., Dubrovinskaia, N., Johansson, B., and Ahuja, R.: High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. Phys. Rev. B 70, 212101 (2004).CrossRefGoogle Scholar
Dubrovinskaia, N.A., Dubrovinsky, L.S., Ahuja, R., Prokopenko, V.B., Dmitriev, V., Weber, H.P., Osorio-Guillen, J.M., and Johansson, B.: Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys. Rev. Lett. 87, 275501 (2001).CrossRefGoogle ScholarPubMed
Dubrovinsky, L.S., Dubrovinskaia, N.A., Swamy, V., Muscat, J., Harrison, N.M., Ahuja, R., Holm, B., and Johansson, B.: Materials science: The hardest known oxide. Nature 410, 653 (2001).CrossRefGoogle ScholarPubMed
Stoyanov, E., Langenhorst, F., and Steinle-Neumann, G.: The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases. Am. Mineral. 92, 577 (2007).CrossRefGoogle Scholar
Tian, M., Mahjouri-Samani, M., Eres, G., Sachan, R., Yoon, M., Chisholm, M.F., Wang, K., Puretzky, A.A., Rouleau, C.M., Geohegan, D.B., and Duscher, G.: Structure and formation mechanism of black TiO2 nanoparticles. ACS Nano 9, 10482 (2015).CrossRefGoogle ScholarPubMed
Zhou, W., Li, W., Wang, J.Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K., Wang, L., Fu, H., and Zhao, D.: Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280 (2014).CrossRefGoogle ScholarPubMed
Wagner, C.D., Briggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E.: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie, Minnesota, 1979); p. 298.Google Scholar
McCafferty, E. and Wightman, J.P.: Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 26, 549 (1998).3.0.CO;2-Q>CrossRefGoogle Scholar
Li, F., Han, T., Wang, H., Zheng, X., Wan, J., and Ni, B.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).CrossRefGoogle Scholar
Topsoe, N.Y., Topsoe, H., and Dumesic, J.A.: Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia. J. Catal. 151, 226 (1995).CrossRefGoogle Scholar
Liu, X., Hou, B., Wang, G., Cui, Z., Zhu, X., and Wang, X.: Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 33, 674 (2018).CrossRefGoogle Scholar
Ohsaka, T., Izumi, F., and Fujiki, Y.: Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321 (1978).CrossRefGoogle Scholar
Parker, J.C. and Siegel, R.W.: Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl. Phys. Lett. 57, 943 (1990).CrossRefGoogle Scholar
Li Bassi, A., Cattaneo, D., Russo, V., and Bottani, C.E.: Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. J. Appl. Phys. 98, 074305 (2005).CrossRefGoogle Scholar
Wang, Z. and Saxena, S.K.: Raman spectroscopic study on pressure-induced amorphization in nanocrystalline anatase (TiO2). Solid State Commun. 118, 75 (2001).CrossRefGoogle Scholar
Zhu, K-R., Zhang, M-S., Chen, Q., and Yin, Z.: Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A 340, 220 (2005).CrossRefGoogle Scholar
Li, L., Yan, J., Wang, T., Zhao, Z.J., Zhang, J., Gong, J., and Guan, N.: Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 6, 5881 (2015).CrossRefGoogle ScholarPubMed
Sang, L., Zhao, Y., and Burda, C.: TiO2 nanoparticles as functional building blocks. Chem. Rev. 114, 9283 (2014).CrossRefGoogle ScholarPubMed
Satoh, N., Nakashima, T., Kamikura, K., and Yamamoto, K.: Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat. Nanotechnol. 3, 106 (2008).CrossRefGoogle ScholarPubMed
Monticone, S., Tufeu, R., Kanaev, A.V., Scolan, E., and Sanchez, C.: Quantum size effect in TiO2 nanoparticles: Does it exist? Appl. Surf. Sci. 162–163, 565 (2000).CrossRefGoogle Scholar
Scolan, E. and Sanchez, C.: Synthesis and characterization of surface-protected nanocrystalline titania particles. Chem. Mater. 10, 3217 (1998).CrossRefGoogle Scholar
Mills, A. and Le Hunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A 108, 1 (1997).CrossRefGoogle Scholar
Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y.: Photocatalytic hydrogenation of propyne with water on small-particle titania: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).CrossRefGoogle Scholar
Kormann, C., Bahnemann, D.W., and Hoffmann, M.R.: Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196 (1988).CrossRefGoogle Scholar
Lin, H., Huang, C., Li, W., Ni, C., Shah, S., and Tseng, Y.: Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal., B 68, 1 (2006).CrossRefGoogle Scholar
Ullattil, S.G. and Periyat, P.: Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn(II) as ‘anatase phase purifier’. Nanoscale 7, 19184 (2015).CrossRefGoogle ScholarPubMed
Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905 (2013).CrossRefGoogle ScholarPubMed
Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198 (2014).CrossRefGoogle Scholar
Tian, M., Mahjouri-Samani, M., Wang, K., Puretzky, A.A., Geohegan, D.B., Tennyson, W.D., Cross, N., Rouleau, C.M., Zawodzinski, T.A. Jr., Duscher, G., and Eres, G.: Black anatase formation by annealing of amorphous nanoparticles and the role of the Ti2O3 shell in self-organized crystallization by particle attachment. ACS Appl. Mater. Interfaces 9, 22018 (2017).CrossRefGoogle ScholarPubMed
Lu, Z., Yip, C-T., Wang, L., Huang, H., and Zhou, L.: Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 77, 991 (2012).CrossRefGoogle Scholar
Chen, X., Liu, L., Liu, Z., Marcus, M.A., Wang, W.C., Oyler, N.A., Grass, M.E., Mao, B., Glans, P.A., Yu, P.Y., Guo, J., and Mao, S.S.: Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 3, 1510 (2013).CrossRefGoogle ScholarPubMed
Myung, S-T., Kikuchi, M., Yoon, C.S., Yashiro, H., Kim, S-J., Sun, Y-K., and Scrosati, B.: Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 6, 2609 (2013).CrossRefGoogle Scholar
Shin, J-Y., Joo, J.H., Samuelis, D., and Maier, J.: Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543 (2012).CrossRefGoogle Scholar
Xia, T. and Chen, X.: Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 1, 2983 (2013).CrossRefGoogle Scholar
Naldoni, A., Allieta, M., Santangelo, S., Marelli, M., Fabbri, F., Cappelli, S., Bianchi, C.L., Psaro, R., and Dal Santo, V.: Effect of nature and location of defects on band gap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600 (2012).CrossRefGoogle Scholar
Tominaka, S.: Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors. Inorg. Chem. 51, 10136 (2012).CrossRefGoogle ScholarPubMed
Swamy, V., Menzies, D., Muddle, B.C., Kuznetsov, A., Dubrovinsky, L.S., Dai, Q., and Dmitriev, V.: Nonlinear size dependence of anatase TiO2 lattice parameters. Appl. Phys. Lett. 88, 243103 (2006).CrossRefGoogle Scholar
Li, G., Boerio-Goates, J., Woodfield, B.F., and Li, L.: Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl. Phys. Lett. 85, 2059 (2004).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F.: Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 114, 9613 (2014).CrossRefGoogle ScholarPubMed
Santara, B., Giri, P.K., Imakita, K., and Fujii, M.: Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures. J. Phys. D: Appl. Phys. 47, 215302 (2014).CrossRefGoogle Scholar
Smith, S.J., Stevens, R., Liu, S., Li, G., Navrotsky, A., Boerio-Goates, J., and Woodfield, B.F.: Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability. Am. Mineral. 94, 236 (2009).CrossRefGoogle Scholar
Mitsuhashi, T. and Kleppa, O.J.: Transformation enthalpies of the TiO2 polymorphs. J. Am. Ceram. Soc. 62, 356 (1979).CrossRefGoogle Scholar
Jamieson, J.C., Olinger, B., Dachille, F., Simons, P., and Roy, R.: Pressure-temperature studies of anatase, brookite rutile and TiO2(II)—A discussion. Am. Mineral. 54, 1477 (1969).Google Scholar
Muscat, J., Swamy, V., and Harrison, N.M.: First-principles calculations of the phase stability of TiO2. Phys. Rev. B 65, 224112 (2002).CrossRefGoogle Scholar
Luo, Y., Benali, A., Shulenburger, L., Krogel, J.T., Heinonen, O., and Kent, P.R.: Phase stability of TiO2 polymorphs from diffusion quantum Monte Carlo. New J. Phys. 18, 113049 (2016).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F.: Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
Barnard, A.S. and Curtiss, L.A.: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).CrossRefGoogle ScholarPubMed
Shannon, R.D. and Pask, J.A.: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
Vargas, S., Arroyo, R., Haro, E., and Rodríguez, R.: Effects of cationic dopants on the phase transition temperature of titania prepared by the sol–gel method. J. Mater. Res. 14, 3932 (2011).CrossRefGoogle Scholar
Riyas, S., Krishnan, G., and Mohan Das, P.N.: Anatase–rutile transformation in doped titania under argon and hydrogen atmospheres. Adv. Appl. Ceram. 106, 255 (2013).CrossRefGoogle Scholar
Batzill, M., Morales, E.H., and Diebold, U.: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 96, 026103 (2006).CrossRefGoogle ScholarPubMed
David, J., Trolliard, G., and Maître, A.: Transmission electron microscopy study of the reaction mechanisms involved in the carbothermal reduction of anatase. Acta Mater. 61, 5414 (2013).CrossRefGoogle Scholar
Liborio, L. and Harrison, N.: Thermodynamics of oxygen defective Magnéli phases in rutile: A first-principles study. Phys. Rev. B 77, 104104 (2008).CrossRefGoogle Scholar
Le Page, Y. and Strobel, P.: Structural chemistry of the Magnéli phases TinO2n−1, 4 ≤ n ≤ 9. J. Solid State Chem. 44, 273 (1982).CrossRefGoogle Scholar
Mahjouri-Samani, M., Tian, M., Puretzky, A.A., Chi, M., Wang, K., Duscher, G., Rouleau, C.M., Eres, G., Yoon, M., Lasseter, J., Xiao, K., and Geohegan, D.B.: Nonequilibrium synthesis of TiO2 nanoparticle “building blocks” for crystal growth by sequential attachment in pulsed laser deposition. Nano Lett. 17, 4624 (2017).CrossRefGoogle ScholarPubMed
Hanaor, D.A.H. and Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2010).CrossRefGoogle Scholar
Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.J., Song, Y., and Sun, Z.: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755 (2014).CrossRefGoogle ScholarPubMed
Yin, H., Lin, T., Yang, C., Wang, Z., Zhu, G., Xu, T., Xie, X., Huang, F., and Jiang, M.: Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chem.–Eur. J. 19, 13313 (2013).CrossRefGoogle ScholarPubMed
Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C., Zhang, J.Z., and Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011).CrossRefGoogle ScholarPubMed
Zhang, S., Zhang, S., Peng, B., Wang, H., Yu, H., Wang, H., and Peng, F.: High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem. Commun. 40, 24 (2014).CrossRefGoogle Scholar
Di Paola, A., Bellardita, M., and Palmisano, L.: Brookite, the least known TiO2 photocatalyst. Catalysts 3, 36 (2013).CrossRefGoogle Scholar
Zhu, G., Lin, T., , X., Zhao, W., Yang, C., Wang, Z., Yin, H., Liu, Z., Huang, F., and Lin, J.: Black brookite titania with high solar absorption and excellent photocatalytic performance. J. Mater. Chem. A 1, 9650 (2013).CrossRefGoogle Scholar
Li, J-G. and Ishigaki, T.: Brookite → rutile phase transformation of TiO2 studied with monodispersed particles. Acta Mater. 52, 5143 (2004).CrossRefGoogle Scholar
Rao, C.N.R., Yoganarasimhan, S.R., and Faeth, P.A.: Studies on the brookite-rutile transformation. Trans. Faraday Soc. 57, 504 (1961).CrossRefGoogle Scholar
Huberty, J. and Xu, H.: Kinetics study on phase transformation from titania polymorph brookite to rutile. J. Solid State Chem. 181, 508 (2008).CrossRefGoogle Scholar
Xin, X., Xu, T., Wang, L., and Wang, C.: Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. Sci. Rep. 6, 23684 (2016).CrossRefGoogle ScholarPubMed
Kumar, S.G. and Rao, K.S.: Polymorphic phase transition among the titania crystal structures using a solution-based approach: From precursor chemistry to nucleation process. Nanoscale 6, 11574 (2014).CrossRefGoogle ScholarPubMed
Li, L., Shi, K., Tu, R., Qian, Q., Li, D., Yang, Z., and Lu, X.: Black TiO2(B)/anatase bicrystalline TiO2–x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 36, 1943 (2015).CrossRefGoogle Scholar
Cai, J., Wang, Y., Zhu, Y., Wu, M., Zhang, H., Li, X., Jiang, Z., and Meng, M.: In situ formation of disorder-engineered TiO2(B)-Anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 7, 24987 (2015).CrossRefGoogle ScholarPubMed
Zheng, P., Hao, R., Zhao, J., Jia, S., Cao, B., and Zhu, Z.: Kinetic reconstruction of TiO2 surfaces as visible-light-active crystalline phases with high photocatalytic performance. J. Mater. Chem. A 2, 4907 (2014).CrossRefGoogle Scholar
Li, J., Liu, C-H., Li, X., Wang, Z-Q., Shao, Y-C., Wang, S-D., Sun, X-L., Pong, W-F., Guo, J-H., and Sham, T-K.: Unraveling the origin of visible light capture by core–shell TiO2 nanotubes. Chem. Mater. 28, 4467 (2016).CrossRefGoogle Scholar
Lu, H., Zhao, B., Pan, R., Yao, J., Qiu, J., Luo, L., and Liu, Y.: Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 4, 1128 (2014).CrossRefGoogle Scholar
Ishida, Y., Doshin, W., Tsukamoto, H., and Yonezawa, T.: Black TiO2 nanoparticles by a microwave-induced plasma over titanium complex aqueous solution. Chem. Lett. 44, 1327 (2015).CrossRefGoogle Scholar
Fujiwara, K., Deligiannakis, Y., Skoutelis, C.G., and Pratsinis, S.E.: Visible-light active black TiO2–Ag/TiOx particles. Appl. Catal., B 154–155, 9 (2014).CrossRefGoogle Scholar
Khan, M.M., Ansari, S.A., Pradhan, D., Ansari, M.O., Han, D.H., Lee, J., and Cho, M.H.: Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2, 637 (2014).CrossRefGoogle Scholar
Wang, Z., Yang, C.Y., Lin, T.Q., Yin, H., Chen, P., Wan, D.Y., Xu, F.F., Huang, F.Q., Lin, J.H., Xie, X.M., and Jiang, M.H.: Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007 (2013).CrossRefGoogle Scholar
Zhu, G., Yin, H., Yang, C., Cui, H., Wang, Z., Xu, J., Lin, T., and Huang, F.: Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. ChemCatChem 7, 2614 (2015).CrossRefGoogle Scholar
Sinhamahapatra, A., Jeon, J.P., and Yu, J.S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015).CrossRefGoogle Scholar
Ramchiary, A. and Samdarshi, S.K.: High visible light activity of hydrogenated structure-engineered mixed phase titania photocatalyst. Chem. Phys. Lett. 597, 63 (2014).CrossRefGoogle Scholar
Wang, H., Lin, T., Zhu, G., Yin, H., , X., Li, Y., and Huang, F.: Colored titania nanocrystals and excellent photocatalysis for water cleaning. Catal. Commun. 60, 55 (2015).CrossRefGoogle Scholar
Yan, Y., Hao, B., Wang, D., Chen, G., Markweg, E., Albrecht, A., and Schaaf, P.: Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. A 1, 14507 (2013).CrossRefGoogle Scholar
Sun, C., Jia, Y., Yang, X-H., Yang, H-G., Yao, X., Lu, G.Q., Selloni, A., and Smith, S.C.: Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J. Phys. Chem. C 115, 25590 (2011).CrossRefGoogle Scholar
Jiang, X., Zhang, Y., Jiang, J., Rong, Y., Wang, Y., Wu, Y., and Pan, C.: Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 116, 22619 (2012).CrossRefGoogle Scholar
Li, G., Lian, Z., Li, X., Xu, Y., Wang, W., Zhang, D., Tian, F., and Li, H.: Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J. Mater. Chem. A 3, 3748 (2015).CrossRefGoogle Scholar
Zhang, K., Wang, L., Kim, J.K., Ma, M., Veerappan, G., Lee, C-L., Kong, K-J., Lee, H., and Park, J.H.: An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 9, 499 (2016).CrossRefGoogle Scholar
Hoang, S., Guo, S., Hahn, N.T., Bard, A.J., and Mullins, C.B.: Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 12, 26 (2012).CrossRefGoogle ScholarPubMed
Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., and Li, Y.: Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690 (2012).CrossRefGoogle ScholarPubMed
Dong, J., Han, J., Liu, Y., Nakajima, A., Matsushita, S., Wei, S., and Gao, W.: Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Interfaces 6, 1385 (2014).CrossRefGoogle Scholar
Liu, N., Haublein, V., Zhou, X., Venkatesan, U., Hartmann, M., Mackovic, M., Nakajima, T., Spiecker, E., Osvet, A., Frey, L., and Schmuki, P.: “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett. 15, 6815 (2015).CrossRefGoogle ScholarPubMed
Li, G., Zhang, Z., Peng, H., and Chen, K.: Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv. 3, 11507 (2013).CrossRefGoogle Scholar
Qiu, B., Xing, M., and Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852 (2014).CrossRefGoogle ScholarPubMed
Chen, J., Song, W.X., Hou, H.S., Zhang, Y., Jing, M.J., Jia, X.N., and Ji, X.B.: Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 25, 6793 (2015).CrossRefGoogle Scholar
Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q-F., Sun, C., Lai, C., Zhao, H., and Zhang, S.: Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J. Phys. Chem. C 118, 8824 (2014).CrossRefGoogle Scholar
Lepcha, A., Maccato, C., Mettenbörger, A., Andreu, T., Mayrhofer, L., Walter, M., Olthof, S., Ruoko, T.P., Klein, A., Moseler, M., Meerholz, K., Morante, J.R., Barreca, D., and Mathur, S.: Electrospun black titania nanofibers: Influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance. J. Phys. Chem. C 119, 18835 (2015).CrossRefGoogle Scholar
Shen, L., Xing, Z., Zou, J., Li, Z., Wu, X., Zhang, Y., Zhu, Q., Yang, S., and Zhou, W.: Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci. Rep. 7, 41978 (2017).CrossRefGoogle ScholarPubMed
Jing, H., Cheng, Q., Weller, J.M., Chu, X.S., Wang, Q.H., and Chan, C.K.: Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment. J. Mater. Res. 1, 3540 (2018).CrossRefGoogle Scholar
Zhang, H., Chen, B., Banfield, J.F., and Waychunas, G.A.: Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 78, 214106 (2008).CrossRefGoogle Scholar
Prasai, B., Cai, B., Underwood, M.K., Lewis, J.P., and Drabold, D.A.: Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 47, 7515 (2012).CrossRefGoogle Scholar
Van Hoang, V.: Structural properties of simulated liquid and amorphous TiO2. Phys. Status Solidi B 244, 1280 (2007).CrossRefGoogle Scholar
Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261 (2012).CrossRefGoogle Scholar
Hirata, A., Guan, P., Fujita, T., Hirotsu, Y., Inoue, A., Yavari, A.R., Sakurai, T., and Chen, M.: Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28 (2011).CrossRefGoogle Scholar
Borodin, V.A.: Local atomic arrangements in polytetrahedral materials. Philos. Mag. A 79, 1887 (1999).CrossRefGoogle Scholar
Finney, J.L.: Modelling the structures of amorphous metals and alloys. Nature 266, 309 (1977).CrossRefGoogle Scholar
Onishi, H. and Iwasawa, Y.: Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surf. Sci. 313, L783 (1994).CrossRefGoogle Scholar
Onishi, H. and Iwasawa, Y.: Dynamic visualization of a metal-oxide-surface/gas-phase reaction: Time-resolved observation by scanning tunneling microscopy at 800 K. Phys. Rev. Lett. 76, 791 (1996).CrossRefGoogle ScholarPubMed
Lu, X., Chen, A., Luo, Y., Lu, P., Dai, Y., Enriquez, E., Dowden, P., Xu, H., Kotula, P.G., Azad, A.K., Yarotski, D.A., Prasankumar, R.P., Taylor, A.J., Thompson, J.D., and Jia, Q.: Conducting interface in oxide homojunction: Understanding of superior properties in black TiO2. Nano Lett. 16, 5751 (2016).CrossRefGoogle ScholarPubMed