Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T09:44:29.566Z Has data issue: false hasContentIssue false

Rapid crystallization of thin solid films

Published online by Cambridge University Press:  31 January 2011

C. J. van der Poel
Affiliation:
Philips Research Laboratories, P. O. Box 80.000, 5600 JA Eindhoven. The Netherlands
Get access

Abstract

Laser-beam-controlled heating appears to be an excellent technique for driving isothermal transformations in a thin solid film on a thick substrate. The transformation is detected by the change in optical properties of the film as it evolves from the initial to the final state. Results are presented for the amorphous-to-crystalline transition in 100 nm thick films of InSb and of some Te alloys on thick glass substrates. Discrimination between interface growth and homogeneous crystallization can be made from the data. The crystallization of InSb films can be desribed by an Avrami equation with a single activation energy of 154 ± 6 kJ/mol over the full range of measured crystallization times between 100μs and 1000s. For low temperatures the results are consistent with differential scanning calorimetry (DSC) measurements. For Te-alloy films, the large temperature interval covered by the experimental method enables clear observation of the curvature of the temperature-time-transmission (T–t–t) plot.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Olson, G. L.Kokorowski, S. A.Roth, J. A. and Hess, L. D.Mater. Res. Soc. Symp. Proc. 13, 141 (1983).Google Scholar
2Bouwhuis, G. and Braat, J. J. M.Applied Optics and Optical Engineering (Academic, New York, 1983), Vol. IX, p. 73.Google Scholar
3Pittaway, L. G.Brit. J. Appl. Phys. 15, 967 (1964).Google Scholar
4Peak, U. C. and Kestenbaum, A.J. Appl. Phys. 44, 2260 (1973).Google Scholar
5Fehribach, J. D.Ghez, R. and Oehrlein, G. S.Appl. Phys. Lett. 46, 433 (1985).Google Scholar
6Carslaw, H. S. and Jaeger, J. C.Conduction of Heat in Solids (Oxford U. P., London, 1980), p. 18.Google Scholar
7Tranter, C. J.Integral Transforms in Mathematical Physics (Methuen, London, 1974), p. 46.Google Scholar
8Ambramowitz, M. and Stegun, I. A.Handbook of Mathematical Functions (Dover, New York, 1972), p. 486.Google Scholar
9Touloukian, Y. S.Powell, R. W.Ho, C. Y. and Klemens, P. G.Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 2, p. 97.Google Scholar
10Jellison, G. E. Jr. , and Burke, H. H.J. Appl. Phys. 60, 841 (1986).CrossRefGoogle Scholar
11Vriens, L. and Rippens, W.Appl. Opt. 22, 4105 (1983).Google Scholar
12Poel, C. J. van der, Gravesteijn, D. J.Rippens, W. G. V. M.Stockx, H. T. L. P. and Uijen, C. M. J. van, J. Appl. Phys. 59, 1819 (1986).Google Scholar
13Maxwell, J. C.Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).Google Scholar
14Heavens, O. S.Optical Properties of Thin Solid Films (Dover, New York, 1965), p. 46.Google Scholar
15Avrami, M.J. Chem. Phys. 9, 177 (1941).Google Scholar
16Surinach, S.Baro, M. D.Clavguera-Mora, M. T., and Clava-guera, N., J. Non-Cryst. Solids 58, 209 (1983).Google Scholar
17Weinberg, M. C.J. Non-Cryst. Solids 76, 253 (1985).Google Scholar
18Kivits, P.Bont, R. de, and Zalm, P.Appl. Phys. 24, 273 (1981).Google Scholar