Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T12:11:09.212Z Has data issue: false hasContentIssue false

Pure tetravalent nickel in γ-type nickel oxyhydroxide as secondary battery electrode

Published online by Cambridge University Press:  31 January 2011

Kyoo-Seung Han
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226, Japan
Masahiro Yoshimura
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226, Japan
Joo-Byoung Yoon
Affiliation:
Department of Chemistry, Center for Molecular Catalysis, College of Natural Sciences, Seoul National University, Seoul 151–742, Korea
Jin-Ho Choy
Affiliation:
Department of Chemistry, Center for Molecular Catalysis, College of Natural Sciences, Seoul National University, Seoul 151–742, Korea
Kwang-Ja Park
Affiliation:
Inorganic Chemistry Division, National Institute of Technology and Quality, 2, Joongang-dong, Kwacheon 427–010, Korea
Get access

Abstract

Pure tetravalent nickel in γ-type cobalt substituted nickel oxyhydroxide, Ni0.70Co0.30O2K0.30(H2O)0.42, could be obtained by the “chimie douce” reaction. The presence of tetravalent nickel is confirmed by comparing the Ni K-edge XANES spectrum of the sample with those of reference compounds having various nickel valency and similar layer structure. The Co K-edge XANES spectrum indicates that the trivalent cobalt remains unchanged regardless of the nickel valency. The structural modification during chimie douce reaction observed from XRD patterns and the result of iodometric titration are consistent with the Ni and Co K-edge XANES data.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliva, P., Leonardi, J., Laurent, J. F., Delmas, C., Braconnier, J. J., Figlarz, M., Fievet, F., and de Guibert, A., J. Power Sources 8, 229 (1982).CrossRefGoogle Scholar
2.Delmas, C., Braconnier, J. J., Borthomieu, Y., and Hagenmuller, P., Mater. Res. Bull. 22, 741 (1987).CrossRefGoogle Scholar
3.Delmas, C., Braconnier, J. J., Borthomieu, Y., and Figlarz, M., Solid State Ionics 28/30, 1132 (1988).CrossRefGoogle Scholar
4.Delmas, C., Borthomieu, Y., Faure, C., Delahaye, A., and Figlarz, M., Solid State Ionics 32/33, 104 (1989).CrossRefGoogle Scholar
5.O'Grady, W. E., Pandya, K. I., Swider, K. E., and Corrigan, D. A., J. Electrochem. Soc. 143, 1613 (1996).CrossRefGoogle Scholar
6.Delmas, C., Fouassier, C., and Hagenmuller, P., Physica 99B, 81 (1980).Google Scholar
7.Calas, G. and Petiau, J., Solid State Commun. 48, 625 (1983).CrossRefGoogle Scholar
8.Belli, M., Scafati, A., Bianconi, A., Mobilio, S., Palladino, L., Reale, A., and Burattini, E., Solid State Commun. 35, 355 (1980).CrossRefGoogle Scholar
9.Wong, J., Lytle, F. W., Messmer, R. P., and Maylotte, D. H., Phys. Rev. B 30, 5596 (1984).CrossRefGoogle Scholar
10.Kosugi, N., Tokoyama, T., Asakura, K., and Kuroda, H., J. Chem. Phys. 91, 249 (1984).Google Scholar
11.Sahiner, A., Croft, M., Guha, S., Perez, I., Zhang, Z., Greenblatt, M., Metcalf, P. A., Jahns, H., and Liang, G., Phys. Rev. B 51, 5879 (1995).CrossRefGoogle Scholar
12.Tan, Z., Heald, S. M., Cheong, S. W., Cooper, A. S., and Moodenbaugh, A. R., Phys. Rev. B 47, 12 365 (1993).CrossRefGoogle Scholar
13.Shulman, R. G., Yafet, Y., Eisenberger, P., and Blumberg, E., Proc. Natl. Acad. Sci. USA 73, 1384 (1976).CrossRefGoogle Scholar
14.Bianconi, A., Giovannelli, A., Davoli, I., Stizza, S., Palladino, L., Gzowski, O., and Murawski, L., Solid State Commun. 42, 547 (1982).CrossRefGoogle Scholar