Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T16:18:53.668Z Has data issue: false hasContentIssue false

Preparation of molybdenum nitride thin films by N+ ion implantation

Published online by Cambridge University Press:  31 January 2011

J-G. Choi
Affiliation:
Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136
D. Choi
Affiliation:
Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136
L.T. Thompson*
Affiliation:
Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

A series of molybdenum nitride films were synthesized by implanting energetic nitrogen ions into molybdenum thin films. The resulting films were characterized using x-ray diffraction to determine the effects of nitrogen ion dose (4 × 1016−4 × 1017 N+/cm2), accelerating voltage (50–200 kV), and target temperature (∼298–773 K) on their structural properties. The order of structural transformation with increased incorporation of nitrogen ions into the Mo film can be summarized as follows: Mo → γ−Mo2N → δ−MoN. Nitrogen incorporation was increased by either increasing the dose or decreasing the ion energy. At elevated target temperatures the metastable B1–MoN phase was also produced. In most cases the Mo nitride crystallites formed with the planes of highest atomic density parallel to the substrate surface. At high ion energies preferential orientation developed so that the more open crystallographic directions aligned with the ion beam direction. We tentatively attributed this behavior to ion channeling effects.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
2.Leclercq, L., Provost, M., Pastor, M., Grimblot, J., Hardy, A. M., Gengembre, L., and Leclercq, G., J. Catal. 117, 371 (1989).CrossRefGoogle Scholar
3.Oyama, S. T., Schlatter, J. C., Metcalfe, J. E., and Lambert, J. M., Ind. Eng. Chem. Res. 27, 1639 (1988).CrossRefGoogle Scholar
4.Volpe, L. and Boudart, M., Catal. Rev.-Sci. Eng. 27 (4), 515 (1985).CrossRefGoogle Scholar
5.Lee, J. S., Volpe, L., Ribeiro, H., and Boudart, M., J. Catal. 112, 44 (1988).CrossRefGoogle Scholar
6.Leary, K. J., Michaels, J. N., and Stacy, A. M., J. Catal. 101, 301 (1986).CrossRefGoogle Scholar
7.Choi, D., Choi, J-G., and Thompson, L. T., to be published.Google Scholar
8.Evans, J. H. and Eyre, B. L., Acta Metall. 17, 1109 (1969).CrossRefGoogle Scholar
9.Barrett, C. S. and Massalski, T. B., Structure of Metals (Pergamon Press, New York, 1980), 3rd ed., p. 540.Google Scholar
10.Lin, W-L., Kheyrandish, H., and Colligon, J. S., Mater. Sci. Eng. B 1, 165 (1988).CrossRefGoogle Scholar
11.Grabowski, K. S., Kahn, A. D. F., Donovan, E. P., and Carosella, C. A., Nucl. Instrum. Methods Phys. Res. B 39, 190 (1989).CrossRefGoogle Scholar
12.Bussman, U., Meerbach, F. H. J., and Te Kaat, E. H., Nucl. Instrum. Methods Phys. Res. B 39, 230 (1989).CrossRefGoogle Scholar
13.Saito, K. and Asada, Y., J. Phys. F 17, 2273 (1987).CrossRefGoogle Scholar
14.Pickett, W. E., Klein, B. M., and Papaconstantopoulos, D. A., Physica 107B, 667 (1981).Google Scholar
15.Yoshitake, N., Tokunaga, S., and Moriya, S., J. Mater. Sci. Lett. 6, 1450 (1987).Google Scholar
16.Smit, F. A., Inter. Mater. Rev. 35 (2), 61 (1990).CrossRefGoogle Scholar
17.Kay, E. and Rossnagel, S. M., in Handbook of Ion Beam Technology, edited by Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R. (Noyes Publ., Park Ridge, NJ, 1989).Google Scholar
18.Harper, J. M. E., Cuomo, J. J., Gambino, R. J., and Kaufman, H. R., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelley, R. (Elsevier, Amsterdam, 1984).Google Scholar
19.Dobrev, D., Thin Solid Films 92, 41 (1982).CrossRefGoogle Scholar
20.Van Wyk, G. N. and Smith, H. J., Nucl. Instrum. Methods 170, 433 (1980).CrossRefGoogle Scholar
21.Terada, N., Nase, M., and Hoshi, Y., Adv. Cryo. Eng. 32, 663 (1986).Google Scholar
22.Linker, G., Schmidt, H., Politis, C., Smithey, R., and Ziemann, P., J. Phys. F 16, 2167 (1986).CrossRefGoogle Scholar
23.Ihara, H., Kimura, Y., Senzaki, K., Kezuka, H., and Hirabayashi, M., Phys. Rev. B 31, 3177 (1985).CrossRefGoogle Scholar