Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T00:36:09.983Z Has data issue: false hasContentIssue false

Preferential growth mechanism of REBa2Cu3Oy (RE = Y, Nd) crystal on MgO substrate by liquid phase epitaxy

Published online by Cambridge University Press:  31 January 2011

Katsumi Nomura
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062, Japan
Saburo Hoshi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062, Japan
Xin Yao
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062, Japan
Kazuomi Kakimoto
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062, Japan
Yuichi Nakamura
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062, Japan
Teruo Izumi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062, Japan
Yuh Shiohara
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062, Japan
Get access

Abstract

Growth of the REBa2Cu3Oy (REBCO, RE = Y, Nd) crystals on the MgO substrates by the liquid phase epitaxy (LPE) process was investigated to clarify the growth mechanism. The crystal orientation of in-plane alignment was improved during the LPE process due to the preferential dissolution and growth even from a polycrystalline seed film. The orientation of preferential growth depended on the kind of RE for the REBCO system. The phenomena could be explained by the coarsening model by introducing the difference in the interfacial energies, which were considered not only general lattice matching but the Coulomb force at the interface between the REBCO and the MgO crystals. The preferential growth model was developed, and the calculation results showed a good agreement with the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bednorz, J.G. and Muller, K.A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2.Hato, T., Aso, H., Ishimaru, Y., Yoshida, A., and Yokoyama, N., in Advances in Superconductivity XI, edited by Koshizuka, N. and Tajima, S. (Springer-Verlag, Tokyo, Japan, 1999), p. 1155.Google Scholar
3.Hattori, W., Yoshitake, T., and Tahara, S., in Advances in Superconductivity XI, edited by Koshizuka, N. and Tajima, S. (Springer-Verlag, Tokyo, Japan, 1999), p. 1263.Google Scholar
4.Becht, M., Wen, J.G., Saba, F.M., Miura, S., and Tanabe, K., in Advances in Superconductivity XI, edited by Koshizuka, N. and Tajima, S. (Springer-Verlag, Tokyo, Japan, 1999), p. 1075.CrossRefGoogle Scholar
5.Belt, B.F., Ings, J., and Diercks, G., Appl. Phys. Lett. 56, 1805 (1990).CrossRefGoogle Scholar
6.Perng, L.H., Chin, T.S., Chen, K.C., and Lin, C.H., Supercond. Sci. Technol. 3, 233 (1990).Google Scholar
7.Dubs, C., Fischer, K., and Gornert, P., J. Cryst. Growth 123, 611 (1992).CrossRefGoogle Scholar
8.Klemenz, C. and Sheel, H.J., J.Cryst. Growth 129, 421 (1993).Google Scholar
9.Ishida, Y., Kimura, T., Kakimoto, K., Yamada, Y., Nakagawa, Z., Shiohara, Y., and Sawaoka, A.B., Physica C 292, 264 (1997).Google Scholar
10.Kakimoto, K., Ishida, Y., Kimura, T., and Shiohara, Y., in Advances in Superconductivity X, edited by Osamura, K. and Hirabayashi, I. (Springer-Verlag, Tokyo, Japan, 1998), p. 1037.CrossRefGoogle Scholar
11.Miura, S., Hashimoto, K., Wang, F., Enomoto, Y., and Morishita, T., Physica C 278, 201 (1997).Google Scholar
12.Scheel, H.J., Klementz, C., and Reinhalt, F.K., Appl. Phys. Lett. 65, 901 (1994).CrossRefGoogle Scholar
13.Yao, X., Nomura, K., Izumi, T., and Shiohara, Y., in Extended Abstracts, 2000 International Workshop on Superconductivity, Shimane, Japan (ISTEC, Tokyo, Japan, 2000), p. 78.Google Scholar
14.Hoshi, S., Nomura, K., Hayashi, A., Izumi, T., and Shiohara, Y., in Extended Abstracts, 1999 International Workshop on Superconductivity, Kauai Island, Hawaii (ISTEC, Tokyo, Japan, 1999), p. 74.Google Scholar
15.Nomura, K., Hoshi, S., Yao, X., Nakamura, Y., Izumi, T., and Shiohara, Y., J. Japan Inst. Metals 64, 323 (2000).Google Scholar
16.Kakimoto, K., Sugawara, Y., Izumi, T., and Shiohara, Y., Physica C 334, 249 (2000).Google Scholar
17.Hwang, D.M., Ravi, T.S., Ramesh, R., Chan, S.W., Chen, C.Y., Nazar, L., Wu, X.D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990).CrossRefGoogle Scholar
18.Yuhya, S., Kikuchi, K., and Shiohara, Y., J. Mater. Res. 7, 2673 (1992).Google Scholar
19.Tsujino, J., Tatsumi, N., and Shiohara, Y., Physica C 235, 583 (1994).Google Scholar
20.Yamada, Y. and Shiohara, Y., Physica C 217, 182 (1993).CrossRefGoogle Scholar
21.Mullins, W.W., Metal Surfaces-Structure, Energetics, Kinetics (ASM, Metals Park, OH, 1963), p. 17.Google Scholar
22.Trivedi, R., Lectures on the Theory of Phase Transformations, edited by Aaronson, H.I. (Trans. Metall. Soc. AIME, New York, 1975), p. 51.Google Scholar
23.Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, New York, 1970).Google Scholar
24.Bollmann, W., Crystal Lattices, Interface, Matrices (W. Bollmann, Geneva, 1982).Google Scholar
25.Kronberg, M.L. and Wilson, F.H., Metall. Trans. 185, 501 (1949).Google Scholar
26.JCPDS, Card No. 391496, Powder Diffraction File (International Center for Diffraction Data, PA, 1999).Google Scholar
27.JCPDS, Card No. 470302, Powder Diffraction File (International Center for Diffraction Data, PA, 1999).Google Scholar
28.JCPDS, Card No. 450946, Powder Diffraction File (International Center for Diffraction Data, PA, 1999).Google Scholar
29.Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
30.Marti, W., Altorfer, F., and Fischer, P., Physica C 206, 158 (1993).CrossRefGoogle Scholar
31.Izumi, T., Kakimoto, K., Nomura, K., and Shiohara, Y., J. Cryst. Growth 219, 228 (2000).CrossRefGoogle Scholar
32.Wen, J.G., Traeholt, C., and Zandbergen, H.W., Physica C 205, 354 (1993).Google Scholar
33.Pauling, L., The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY, 1960).Google Scholar