Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T08:45:04.263Z Has data issue: false hasContentIssue false

Particle orientation and bulk properties of magnetoactive elastomers fabricated with aligned barium hexaferrite

Published online by Cambridge University Press:  06 February 2019

Corey Breznak*
Affiliation:
Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Paris von Lockette
Affiliation:
Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
*
a)Address all correspondence to this author. e-mail: cmb5615@psu.edu
Get access

Abstract

This work studied the relationship between embedded particle volume fraction and magnetic particle orientation distribution in aligned 325 mesh barium hexaferrite (BHF) and polydimethylsiloxane (Sylgard 184; Dow Corning) magnetoactive elastomer (MAE) composites. BHF particles were aligned within the elastomer in the out-of-plane direction, as the material cured. Particle orientation distribution was defined herein by observations of the population of directions at which particle magnetizations resided; magnetization coincides with the physical crystallographic c-axis of BHF. The work used results of vibrating sample magnetometry experiments on MAEs with increasing volume concentrations of embedded ferromagnetic particles (10–30 v/v%) to determine changing widths of analytical particle distribution functions used to describe the range of particle orientations. With over 80% confidence, results showed that MAE composites having the intermediate 15 v/v% had the highest degree of magnetic (and thereby physical) alignment as well as magnetic remanence.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lockette, P.V., Lofland, S.E., Biggs, J., Roche, J., Mineroff, J., and Babcock, M.: Investigating new symmetry classes in magnetorheological elastomers: Cantilever bending behavior. Smart Mater. Struct. 20, 105022 (2011).CrossRefGoogle Scholar
Koo, J-H., Dawson, A., and Jung, H-J.: Characterization of actuation properties of magnetorheological elastomers with embedded hard magnetic particles. J. Intell. Mater. Syst. Struct. 23, 10491054 (2012).CrossRefGoogle Scholar
Lockette, P.V. and Sheridan, R.: Folding actuation and locomotion of novel magneto-active elastomer (MAE) composites. In Proceedings of the AMSE 2013 Conference on Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation, Vol. 1, Johnson, N., Naguib, H., Turner, T., Anderson, I., Bassiri-Gharb, N., Daqaq, M., Baba Sundaresan, V. and Sarles, A., eds. (The American Society of Mechanical Engineers, New York, 2013); p. V001T01A020.Google Scholar
Breznak, C. and Lockette, P.V.: Evolution of the magnetization response of magneto-active elastomers made with hard-magnetic M-type barium hexaferrite particles. MRS Adv. 1, 3943 (2016).CrossRefGoogle Scholar
Shepherd, P., Mallick, K.K., and Green, R.J.: Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 312, 683692 (2007).CrossRefGoogle Scholar
Radwan, M., Rashad, M., and Hessien, M.: Synthesis and characterization of barium hexaferrite nanoparticles. J. Mater. Process. Technol. 181, 106109 (2007).CrossRefGoogle Scholar
Sadhana, K., Praveena, K., and Matteppanavar, S.: Structural and magnetic properties of nanocrystalline BaFe12O19 synthesized by microwave-hydrothermal method. Appl. Nanosci. 2, 247252 (2012).CrossRefGoogle Scholar
Jolly, M.R., Carlson, J.D., Muñoz, B.C., and Bullions, T.A.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613622 (1996).CrossRefGoogle Scholar
Jolly, M.R., Carlson, J.D., and Muñoz, B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607 (1996).CrossRefGoogle Scholar
Shiga, T., Okada, A., and Kurauchi, T.: Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci. 58, 787792 (1995).CrossRefGoogle Scholar
Chokkalingam, R., Pandi, R.S., and Mahendran, M.: Magnetomechanical behavior of Fe/PU magnetorheological elastomers. J. Compos. Mater. 45, 15451552 (2010).CrossRefGoogle Scholar
Boczkowska, A., Awietjan, S.F., Wejrzanowski, T., and Kurzydłowski, K.J.: Image analysis of the microstructure of magnetorheological elastomers. J. Mater. Sci. 44, 31353140 (2009).CrossRefGoogle Scholar
Rodriguez-Aurelio, M. and vonlockette, P.R.: Evolution of texture in the fabrication of magneto-active elastomers. In Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures, and Intelligent Systems, Karami, A., Anton, S., Nouh, M., Freeman, E., Tummala, Y. and Jovanova, J., eds. (The American Society of Mechanical Engineers, New York, 2017); p. V001T01A008.Google Scholar
Lokander, M. and Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245251 (2003).CrossRefGoogle Scholar
Lokander, M. and Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677680 (2003).Google Scholar
Lokander, M., Reitberger, T., and Stenberg, B.: Oxidation of natural rubber-based magnetorheological elastomers. Polym. Degrad. Stab. 86, 467471 (2004).CrossRefGoogle Scholar
Zhang, X., Peng, S., Wen, W., and Li, W.: Analysis and fabrication of patterned magnetorheological elastomers smart materials and structures. Smart Mater. Struct. 17, 045001 (2008).CrossRefGoogle Scholar
Zhou, Y., Stephen, J., Betts, A., Farrell, G., and Chen, L.: The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers. Mater. Des. 67, 398404 (2015).CrossRefGoogle Scholar
Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85, 33483351 (1999).CrossRefGoogle Scholar
Palacios-Pineda, L., Perales-Martinez, I., Lozano-Sanchez, L., Martínez-Romero, O., Puente-Córdova, J., Segura-Cárdenas, E., and Elías-Zúñiga, A.: Experimental investigation of the magnetorheological behavior of PDMS elastomer reinforced with iron micro/nanoparticles. Polymers 9, 696 (2017).CrossRefGoogle ScholarPubMed
Zaborski, M., Pietrasik, J., and Masłowski, M.: Elastomers containing fillers with magnetic properties. Solid State Phenom. 154, 121126 (2009).CrossRefGoogle Scholar
Saxena, P., Pelteret, J-P., and Steinmann, P.: Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure. Eur. J. Mech. A Solid. 50, 132151 (2015).CrossRefGoogle Scholar
Gasser, T.C., Ogden, R.W., and Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc., Interface 3, 1535 (2006).CrossRefGoogle ScholarPubMed
Holzapfel, G.A. and Ogden, R.W.: Constitutive modelling of arteries. Proc. R. Soc. A 466, 15511597 (2010).CrossRefGoogle Scholar
Han, D.H., Wang, J.P., and Luo, H.L.: Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J. Magn. Magn. Mater. 136, 176182 (1994).CrossRefGoogle Scholar
Lamichhane, T.N., Taufour, V., Masters, M.W., Parker, D.S., Kaluarachchi, U.S., Thimmaiah, S., Bud’ko, S.L., and Canfield, P.C.: Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP. Appl. Phys. Lett. 109, 92402 (2016).CrossRefGoogle Scholar