Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:42:47.493Z Has data issue: false hasContentIssue false

On the inhomogeneity of the crystallographic rolling texture of polycrystalline Fe3Al

Published online by Cambridge University Press:  31 January 2011

D. Raabe*
Affiliation:
Institut für Metallkunde und Metallphysik, Kopernikusstr. 14, RWTH Aachen, 52056 Aachen, Germany
J. Keichel
Affiliation:
Institut für Metallkunde und Metallphysik, Kopernikusstr. 14, RWTH Aachen, 52056 Aachen, Germany
*
(a) Address all correspondence to this author.
Get access

Abstract

An intermetallic Fe3Al alloy was cast, hot rolled, annealed (870 K), and finally quenched. After this treatment, the alloy had an imperfectly ordered B2 structure. The polycrystalline sample was then warm rolled at 800–830 K. The crystallographic texture of the rolled specimen was quantitatively studied within the range, ∈ = 20–80%. Even at large strains (∈ = 80%), recrystallization was not observed in the microstructure. It was found that the rolling texture of Fe3 Al is very inhomogeneous through the sample thickness. In the center layer, a large volume fraction of grains with a {111} lattice plane parallel to the sheet surface, {111}〈uvw〉, and a weak {001} 〈110〉 component were observed. In contrast, close to the sheet surface layer, a weak texture containing the {11 11 8} 〈4 4 11〉 and the {012} 〈110〉 orientations was formed. The results are interpreted in terms of the activation of {110} 〈111〉 and {112} 〈111〉 slip systems. The through-thickness texture gradient was attributed to the inhomogeneous strain distribution during rolling, leading to plane strain in the center layer and to shear strains close to the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ziegler, N., Trans. AIME 100, 267 (1932).Google Scholar
2.Sykes, C. and Bampfylde, J., Iron, J.Steel Inst. 130, 389 (1934).Google Scholar
3.Davies, R. G., J. Phys. Chem. Solids 24, 985 (1963).CrossRefGoogle Scholar
4.Stoloff, N. S. and Davies, R. G., Acta Metall. 12, 473 (1964).CrossRefGoogle Scholar
5.Leamy, H. J., Gibson, E. D., and Kayser, F. X., Acta Metall. 15, 1827 (1967).CrossRefGoogle Scholar
6.Leamy, H. J. and Kayser, F. X., Phys. Status Solidi 34, 765 (1969).CrossRefGoogle Scholar
7.McKamey, C. G., DeVan, J. H., Tortorelli, P. F., and Sikka, V. K., J. Mater. Res. 6, 1779 (1991).CrossRefGoogle Scholar
8.Golightly, F. A., Stott, F. H., and Wood, G. C., Oxid. Metall. 10, 163 (1976).CrossRefGoogle Scholar
9.Tomaszewicz, P. and Wallwork, G.R., Rev. High Temp. Mater. 4, 76 (1978).Google Scholar
10.Tomaszewicz, P. and Wallwork, G. R., Oxid. Metall. 19, 165 (1983).CrossRefGoogle Scholar
11.Chen, G., Huang, Y., Yang, W., and Sun, Z., Proc. Confer. of Proces., Prop. and Applic. of Iron Aluminide (TMS, Warrendale, PA, 1994), p. 3.Google Scholar
12.Sun, Z., Huang, Y., Yang, W., and Chen, G., in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 885.Google Scholar
13.Sun, Z., Huang, Y., Yang, W., and Chen, G., Proc. Confer. High Temp. Prop. of Iron-based Aluminides, San Francisco, CA (TMS, Warrendale, PA, 1994).Google Scholar
14.Masalski, T. B., Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1986).Google Scholar
15.Umakoshi, Y., in Mater. Sci. Technol., edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (VCH, 1993), Vol. 6, p. 251.Google Scholar
16.Umakoshi, Y. and Yamaguchi, M., Philos. Mag. A 41, 573 (1980).CrossRefGoogle Scholar
17.Umakoshi, Y. and Yamaguchi, M., Philos. Mag. A 44, 711 (1981).CrossRefGoogle Scholar
18.Rösner, H., Molénat, G., Kolbe, M., and Nembach, E., Mater. Sci. Eng. A 192/193, 793 (1995).CrossRefGoogle Scholar
19.Marcinkowski, M. J., in Electron Microscopy and Strength of Crystals (Interscience Publ. Inc., New York, 1963), p. 333.Google Scholar
20.Baker, I. and Gaydosh, D. J., Mater. Sci. Eng. 96, 147 (1987).CrossRefGoogle Scholar
21.Baker, I. and Gaydosh, D. J., Phys. Status Solidi 96, 185 (1986).CrossRefGoogle Scholar
22.Rachinger, W. A. and Cottrell, A. H., Acta. Metall. 4, 109 (1956).CrossRefGoogle Scholar
23.Taylor, G. I., J. Inst. Met. 62, 307 (1938).Google Scholar
24.Bunge, H. J., Texture Analysis in Materials Science (Butterworths, London, 1982).Google Scholar
25.Aernoudt, E., van Houtte, P., and Leffers, T., in Mater. Sci. Technol., edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (VCH, 1993), Vol. 6, p. 89.Google Scholar
26.Mao, W. and Sun, Z., Proc. 10th Int. Conf. on Tex. of Mat. ICOTOM 10, Materials Science Forum 157–162, 1009 (1994).Google Scholar
27.Mao, W. and Sun, Z., Scripta Metall. 29, 217 (1993).CrossRefGoogle Scholar
28.Raabe, D., Mater. Lett. 19, 75 (1994).CrossRefGoogle Scholar
29.Raabe, D., Comp. Mat. Sci. 3, 231 (1994).CrossRefGoogle Scholar
30.Raabe, D. and Mao, W., Philos. Mag. A 71, 805 (1995).CrossRefGoogle Scholar
31.Raabe, D. and Lücke, K., Proc. 10th Int. Conf. on Tex. of Mat. ICOTOM 10, Materials Science Forum 157–162, 1469 (1994).Google Scholar
32.Hölscher, M., Raabe, D., and Lücke, K., Steel Research 62, 567 (1991).CrossRefGoogle Scholar
33.Raabe, D. and Lücke, K., Mater. Sci. Technol. 9, 302 (1993).CrossRefGoogle Scholar
34.Hölscher, M., Raabe, D., and Lücke, K., Acta Metall. 42, 879 (1994).CrossRefGoogle Scholar
35.Fedosseev, A. and Raabe, D., Scripta Metall. 30, 1 (1994).CrossRefGoogle Scholar
36.Raabe, D. and Lücke, K., Proc. Int. Conf. on Strip Cast., Hot and Cold Work. of Stainl. Steels, Quebec, Canada, 1993, edited by Ryan, N. D., Brown, A. J., and McQueen, H. J. (The Metall. Soc. of CIM, 1993), pp. 3, 221.Google Scholar
37.Fedosseev, A., Raabe, D. and Gottstein, G., Mater. Sci. Forum 157–162, 1771 (1994).CrossRefGoogle Scholar
38.Schulz, L. G., J. Appl. Phys. 20, 1030 (1949).CrossRefGoogle Scholar
39.Bunge, H. J. and Esling, C., J. Phys. Lett. 40, 627 (1979).CrossRefGoogle Scholar
40.Dahms, M. and Bunge, H. J., J. Appl. Crystallogr. 22, 439 (1989).CrossRefGoogle Scholar
41.Dahms, M., Text. Microstr. 19, 169 (1992).CrossRefGoogle Scholar
42.Matthies, S., Proc. 7th Int. Conf. on Tex. of Mat. ICOTOM 7, edited by Brakman, C. M., Jongenburger, P., and Mittenseijer, E. J. (Netherl. Soc. Mat. Sci., Noordwijkerhout, 1984), p. 737.Google Scholar
43.Raabe, D., Mater. Sci. Technol. 11, 455 (1995).CrossRefGoogle Scholar
44.Doherty, R. D., in Recrystallization of Metallic Materials, edited by Haessner, F. and Riederer, Dr. (Verlag, Stuttgart, 1978), p. 23.Google Scholar
45.Dillamore, I. L., Morris, P. L., Smith, C. J. E., and Hutchinson, W. B., Proc. R. Soc. London 329A, 405 (1972).Google Scholar
46.Smith, C. J. E. and Dillamore, I. L., Metal Sci. 8, 73 (1974).Google Scholar
47.Dillamore, I. L., Smith, C. J. E., and Watson, T. W., Metal Sci. J. 1, 49 (1967).CrossRefGoogle Scholar
48.Takechi, H., Kato, H., and Nagashima, S., Trans. AIME 242, 56 (1968).Google Scholar
49.Honneff, H. and Mecking, H., Proc. 5th Int. Conf. on Tex. of Mat. ICOTOM 5, edited by Gottstein, G. and Lücke, K. (Springer-Verlag, Berlin, 1978), p. 265.Google Scholar
50.Honneff, H. and Mecking, H., Proc. 6th Int. Conf. on Tex. of Mat. ICOTOM 6, edited by Nagashima, S. (Iron and Steel Inst. of Japan, 1981), p. 347.Google Scholar
51.Kocks, U. F. and Chandra, H., Acta Metall. 30, 695 (1982).CrossRefGoogle Scholar
52.Mishra, S., Därmann, C., and Lücke, K., Acta Metall. 32, 2185 (1984).CrossRefGoogle Scholar
53.Raphanel, J. L. and van Houtte, P., Acta Metall. 33, 1481 (1985).CrossRefGoogle Scholar
54.Raabe, D. and Lücke, K., Metallk, Z.. 85, 302 (1994).Google Scholar
55.Raabe, D., Mülders, B., Lücke, K., and Gottstein, G., Proc. 10th Int. Conf. on Tex. of Mat. ICOTOM 10, Mater. Sci. Forum 157–162, 841 (1994).Google Scholar
56.Raabe, D., Schlenkert, G., Weisshaupt, H., and Lücke, K., Mater. Sci. Technol. 10, 229 (1994).CrossRefGoogle Scholar
57.Christian, J. W., Metall. Trans. A 14A, 1237 (1983).CrossRefGoogle Scholar
58.Sesták, B. and Seeger, A., Z. Metall. 69 (4), 195; (6), 355; and (7), 425 (1978).Google Scholar
59.Seidel, L., Hölscher, M., and Lücke, K., Text. Microstr. 11, 171 (1989).CrossRefGoogle Scholar
60.Österle, W. and Wever, H., Z. Metallk. 72, 230 (1981).Google Scholar
61.Beynon, J. H., Ponter, A. R. S., and Sellars, C.M., Proc. Model. of Met. Forming (Kluwer Academic Publishing, Dordrecht, The Netherlands, 1988), p. 321.Google Scholar
62.McLaren, A. J. and Sellars, C.M., Mater. Sci. Technol. 8, 1090 (1992).CrossRefGoogle Scholar