Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T14:48:14.288Z Has data issue: false hasContentIssue false

On temperature dependence of deformation mechanism and the brittle–ductile transition in semiconductors

Published online by Cambridge University Press:  31 January 2011

P. Pirouz*
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204, U.S.A.
A. V. Samant
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204, U.S.A.
M. H. Hong
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204, U.S.A.
A. Moulin
Affiliation:
LEM, CNRS-ONERA, B.P. 72, 29, Av. de la Division Leclerc, 92322 Châtillon Cedex, France
L. P. Kubin
Affiliation:
LEM, CNRS-ONERA, B.P. 72, 29, Av. de la Division Leclerc, 92322 Châtillon Cedex, France
Get access

Abstract

Recent deformation experiments on semiconductors have shown the occurrence of a break in the variation of the critical resolved shear stress of the crystal as a function of temperature. These and many other examples in the literature evidence a critical temperature at which a transition occurs in the deformation mechanism of the crystal. In this paper, the occurrence of a similar transition in two polytypes of SiC is reported and correlated to the microstructure of the deformed crystals investigated by transmission electron microscopy, which shows evidence for partial dislocations carrying the deformation at high stresses and low temperatures. Based on these results and data in the literature, the explanation is generalized to other semiconductors and a possible relationship to their brittle–ductile transition is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alexander, H. and Haasen, P., in Solid State Physics, edited by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic Press, New York and London, 1968), Vol. 22, p. 27.Google Scholar
2.Alexander, H., in Dislocations in Solids, edited by Nabarro, F.R.N (Elsevier Science Publishers B., Amsterdam, 1986), Vol. 7, p. 114.Google Scholar
3.George, A. and Rabier, J., Rev. Phys. Appl. 22, 941 (1987).CrossRefGoogle Scholar
4.Rabier, J. and George, A., Rev. Phys. Appl. 22, 1327 (1987).CrossRefGoogle Scholar
5.Hirth, J.P. and Lothe, J., Theory of Dislocations, (McGraw-Hill, New York, 1968).Google Scholar
6.John, C.St., Phil. Mag. 32, 1193 (1975).CrossRefGoogle Scholar
7.Brede, M. and Haasen, P., Acta Metall. 36, 2003 (1988).CrossRefGoogle Scholar
8.Samuels, J. and Roberts, S.G., Proc. R. Soc. Lond. A 421, 1 (1989).Google Scholar
9.Hirsch, P.B., Roberts, S.G., and Samuels, J., Proc. R. Soc. Lond. A 421, 25 (1989).Google Scholar
10.Hirsch, P.B. and Roberts, S.G., Phil. Mag. A 64, 55 (1991).CrossRefGoogle Scholar
11.Knott, J.F., Fundamental of Fracture Mechanics, (Butterworths, London, 1979).Google Scholar
12.George, A., Solid State Phenomena 59–60, 251 (1998).CrossRefGoogle Scholar
13.Argon, A.S., Acta Metall. 35, 185 (1987).CrossRefGoogle Scholar
14.Escaig, B., in Dislocation Dynamics, edited by Rosenfield, A.R., Hahn, G.T., Bement, A.L. Jr, and Jaffee, R.I. (MacGraw-Hill London, 1968), p. 655.Google Scholar
15.Escaig, B., J. Physique 29, 225 (1968).CrossRefGoogle Scholar
16.Suzuki, T., Koizumi, H., and Kirchner, H.O.K, Phil. Mag. A 71, 389 (1995).CrossRefGoogle Scholar
17.Suzuki, T., Yonenaga, I., and Kirchner, H.O.K, Phys. Rev. Lett. 75, 3470 (1995).CrossRefGoogle Scholar
18.Kirchner, H.O.K and Suzuki, T., Acta Mater. 46, 305 (1997).CrossRefGoogle Scholar
19.Suzuki, T., Nishisako, T., Taru, T., and Yasutomi, T., Phil. Mag. Lett. 77, 173 (1998).CrossRefGoogle Scholar
20.Gall, P., Peyrade, J.P., Coquillé, R., Reynaud, F., Gabillet, S., and Albacette, A., Acta Metall. 35, 143 (1987).CrossRefGoogle Scholar
21.Suzuki, T., Yasutomi, T., Tokuoka, T., and Yonenaga, I., Phil. Mag. A In press (1998).Google Scholar
22.Suzuki, T., Yasutomi, T., Tokuoka, T., and Yonenaga, I., Phys. Stat. Sol. (a) 171, 47 (1999).3.0.CO;2-X>CrossRefGoogle Scholar
23.Samant, A.V., Ph.D. Thesis, Case Western Reserve University (1999).Google Scholar
24.Samant, A.V., Zhou, W.L., and Pirouz, P., Phys. Stat. Sol. (a) 166, 155 (1998).3.0.CO;2-V>CrossRefGoogle Scholar
25.Samant, A.V., Hong, M., and Pirouz, P. (1998, unpublished).Google Scholar
26.Castaing, J., Veyssière, P., Kubin, L.P., and Rabier, J., Phil. Mag. A 44, 1407 (1981).CrossRefGoogle Scholar
27.Demenet, J.F., Etude du Silicium a Basse et Moyenne Temperature Sous Forte Contrainte. Thèse d'etat, Université de Poitiers (UFR Sciences fondamentales et appliquees), No. 457 (1987).Google Scholar
28.Boivin, P., Rabier, J., and Garem, H., Phil. Mag. A 61, 647 (1990).Google Scholar
29.Kaxiras, E. and Duesbery, M.S., Phys. Rev. Lett. 70, 3752 (1993).CrossRefGoogle Scholar
30.Joós, B., Ren, Q., and Duesbery, M.S., Phys. Rev. B 50, 5890 (1994).CrossRefGoogle Scholar
31.Ren, Q., Joós, B., and Duesbery, M.S., Phys. Rev. B 52, 13223 (1995).CrossRefGoogle Scholar
32.Duesbery, M.S. and Joós, B., Phil. Mag. Lett. 74, 253 (1996).CrossRefGoogle Scholar
33.Gottschalk, H., Patzer, G., and Alexander, H., Phys. Stat. Sol. (a) 45, 207 (1978).CrossRefGoogle Scholar
34.Takeuchi, S., Suzuki, K., Maeda, K., and Iwanaga, H., Phil. Mag. A 50, 171 (1984).CrossRefGoogle Scholar
35.Takeuchi, S. and Suzuki, K., Phys. Stat. Sol. (a) 171, 99 (1999).3.0.CO;2-B>CrossRefGoogle Scholar
36.Möller, H-J., Acta. Met. 26, 963 (1978).CrossRefGoogle Scholar
37.Louchet, F. and Thibault-Desseaux, J., Rev. Phys. Appl. 22, 207 (1987).CrossRefGoogle Scholar
38.Pirouz, P. and Ning, X.J., in Proceedings of Microscopy of Semiconducting Materials, edited by Cullis, A.G. and Staton-Bevan, A. (Inst. Phys. Conf. Ser. No. 146, Bristol, England, 1995), p. 69.Google Scholar
39.Wessel, K. and Alexander, H., Phil. Mag. 35, 1523 (1977).CrossRefGoogle Scholar
40.Rabier, J. and Boivin, P., Phil. Mag. A 61, 673 (1990).CrossRefGoogle Scholar
41.Pirouz, P. and Hazzledine, P.M., Scripta Metall. Mater. 25, 1167 (1991).CrossRefGoogle Scholar
42.Pirouz, P., in Twinning in Advanced Materials, edited by Yoo, M.H. and Wuttig, M. (The Minerals, Metals, and Materials Society, Pittsburgh, PA, 1994), p. 275.Google Scholar
43.Branchu, S., Garem, H., Rabier, J., and Demenet, J.L., Phys. Stat. Sol. (a) 167, 89 (1998).3.0.CO;2-7>CrossRefGoogle Scholar
44.Grosbras, P., Demenet, J.L., Garem, H., and Desoyer, J.C., Phys. Stat. Sol. (a) 84, 481 (1984).CrossRefGoogle Scholar
45.Demenet, J.L., Rabier, J., and Garem, H., in Proceedings of Microscopy of Semiconducting Materials, edited by Cullis, A.G. and Augustus, P.D. (Inst. Phys. Conf. Ser. No. 87, Bristol, England, 1987), p. 355.Google Scholar
46.Dement, J.L., Grosbras, P., Garem, H., and Desoyer, J.C., Phil. Mag. A 59, 501 (1989).CrossRefGoogle Scholar
47.Alexander, H., Haasen, P., Labusch, R., and Schröter, W., Phys, J.. (Paris) 40, Colloque C6 (1979).Google Scholar
48.Pirouz, P., Scripta Metall. 23, 401 (1989).CrossRefGoogle Scholar
49.Pirouz, P., in Proceedings of Microscopy of Semiconducting Materials, edited by Roberts, S.G., Holt, D.B., and Wilshaw, P.R. (Inst. Phys. Conf. Ser. No. 104, Bristol, England, 1989), p. 49.Google Scholar
50.Pirouz, P., Scripta Metall. 21, 1463 (1987).CrossRefGoogle Scholar
51.Ning, X.J., Perez, T., Pirouz, P., Phil. Mag. A 72, 837 (1995).CrossRefGoogle Scholar
52.Ning, X.J., Huvey, N., and Pirouz, P., J. Am. Ceram. Soc. 80, 1645 (1997).CrossRefGoogle Scholar
53.Schöck, G., Phil. Mag. A 63, 111 (1991).CrossRefGoogle Scholar
54.Schöck, G. and Püschl, W., Phil. Mag. A 64, 931 (1991).CrossRefGoogle Scholar
55.Rice, J.R., J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
56.Rice, J.R. and Beltz, G.E., J. Mech. Phys. Sol. 42, 333 (1994).CrossRefGoogle Scholar
57.Xu, G., Argon, A.S., and Ortiz, M., Phil. Mag. A 72, 415 (1995).CrossRefGoogle Scholar
58.Xu, G., Argon, A.S., and Ortiz, M., Phi. Mag. A 75, 341 (1997).CrossRefGoogle Scholar
59.Grilhé, J., Europhys. Lett. 23, 141 (1993).CrossRefGoogle Scholar
60.Junqua, N. and Grilhé, J., Phil. Mag. Lett. 75, 125 (1997).CrossRefGoogle Scholar
61.Brochard, S., Junqua, N., and Grilhé, J., Phil. Mag. A 77, 911 (1998).CrossRefGoogle Scholar
62.Brochard, S., Rabier, J., and Grilhé, J., Eur. Phys. J. 75, 99 (1998).Google Scholar
63.Kelly, A., Tyson, W.R., and Cottrell, A.H., Phil. Mag. 15, 567 (1967).CrossRefGoogle Scholar
64.Rice, J.R. and Thomson, R., Phil. Mag. 29, 73 (1974).CrossRefGoogle Scholar
65.Thomson, R., in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1986), Vol. 39, p. 1.Google Scholar
66.Chiao, Y.-H. and Clarke, D.R., Acta Metall. 37, 203 (1989).CrossRefGoogle Scholar
67.Serbena, F.C. and Roberts, S.G., Acta. Metall. Mater. 42, 2505 (1994).CrossRefGoogle Scholar
68.Maeda, K. and Fujita, S., in Lattice Defects in Ceamics, edited by Takeuchi, S. and Suzuki, T. (Jap. J. Appl. Phys. Series 2, Tokyo, 1989), p. 25.Google Scholar
69.Moulin, A., Etude de la Plasticité du Silicium à une Echelle Mésoscopique par Simulation Numérique Tridimensionnelle, Thèse de doctorate, Ecole Centrale de Paris, (1997).Google Scholar
70.Moulin, A., Condat, M., and Kubin, L.P., Acta. Mater. 45, 2339 (1997).CrossRefGoogle Scholar
71.Moulin, A., Condat, M., and Kubin, L.P., Phil. Mag., in press (1998).Google Scholar
72.Yasutake, K., Shimizu, S., Umeno, M., and Kawabe, H., J. Appl. Phys. 61, 940 (1987).CrossRefGoogle Scholar
73.Warren, P.D., Scripta Metall. 23, 637 (1989).CrossRefGoogle Scholar