Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T21:25:57.179Z Has data issue: false hasContentIssue false

Nucleation of a new phase from the interaction of two adjacent phases: Some silicides

Published online by Cambridge University Press:  31 January 2011

F. M. d'Heurle
Affiliation:
IBM Research Center, P. O. Box. 218, Yorktown Heights, New York 10598 and Institutet for Mikrovågsteknik, Kungliga Tekniska Högskolan S-700 44 Stockholm, Sweden
Get access

Abstract

The reactions of metal layers with their silicon substrates resulting in the formation of various silicides are considered generally not only as phenomena common to all diffusion couples where new phases are formed, but also as typical of all transitions from two to three phases. The conditions under which such transitions will display the same characteristics as encountered in the usual one-to-two phase transitions (condensation, crystallization, boiling) are analyzed by comparison to the classical theory of nucleation. Because of the lack of knowledge about the exact values of the relevant parameters, the discussion is carried out mostly in descriptive thermodynamic terms. Although nucleation effects are analyzed in general terms, the main focus of attention is a class of reactions where nucleation dominates the formation of a new phase; a salient feature of these reactions is the absence of any equilibrium temperature, although the nucleation temperatures are relatively well defined within narrow limits. Nucleation effects are correlated to such material characteristics as the stability of the nucleated phases, and to such kinetic characteristics as the sequence of phase formation. The modification of the energy levels of the different phases brought about by stress, ion bombardment, or the replacement of usual phases by metastable ones, are considered with respect to their effect on nucleation processes. The nearly total absence of literature references to nucleation in metal-metal diffusion couples is discussed with respect to some specific aspects of the metal-silicon reactions.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dunning, W. J. in Nucleation, edited by Zettlemoyer, A. C. (Marcel Dekker, New York, 1969), p. 3.Google Scholar
2Neugebauer, C. A. in Handbook of Thin Films Technology, edited by Maissel, L. and Glang, R. (McGraw-Hill, New York, 1970), Chap. 8.Google Scholar
3Chopra, K. L.Thin Film Phenomena (McGraw-Hill, New York, 1969), p. 137.Google Scholar
4Smallman, R. E.Modern Physical Metallurgy (Butterworth, London, 1963).Google Scholar
5Haasen, P., Physical Metallurgy (Cambridge U. P., Cambridge, 1978).Google Scholar
6Doherty, R. D. in Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (North-Holland, Amsterdam, 1983), p. 933.Google Scholar
7Aaronson, H. I. and Russel, K. C. in Solid-Solid Phase Transformations, edited by Aaronson, H. I.Laughlin, D. E.Sekerka, R. F. and Wayman, C. M. (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 371.Google Scholar
8Russell, K. C.Colloid Interface Sci. 13, 205 (1980).Google Scholar
9Cahn, J. W. and Hilliard, J. E.J. Chem. Phys. 31, 688 (1959).CrossRefGoogle Scholar
10Hillert, M., Acta Metall. 9, 525 (1961).Google Scholar
11LeGoues, F. K.Aaronson, H. I.Lee, Y. W. and Fix, G. J. in Solid-Solid Phase Transformations, edited by Aaronson, H. I.Laughlin, D. E., Sekerka, R. F. and Wayman, C. M. (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 427.Google Scholar
12LeGoues, F. K.Lee, Y. W. and Aaronson, H. I.Acta Metall. 32, 1837 (1984).Google Scholar
13LeGoues, F. K.Aaronson, H. I. and Lee, Y. W.Acta Metall. 32, 1845 (1984).Google Scholar
14LeGoues, F. K. and Aaronson, H. I.Acta Metall. 32, 1855 (1984).Google Scholar
15LeGoues, F. K.Wright, R. N.Lee, Y. W. and Aaronson, H. I.Acta Metall. 32, 1865 (1984).Google Scholar
16Adda, Y. and Philibert, I., La Diffusion dans les Solides (Presses Universitaires de France, Paris, 1966), Vol. 1, p. 616.Google Scholar
17Roberts, G. A. and Mehl, R. F.Trans. AIME 154, 318 (1943).Google Scholar
18Roberts, G. A. and Mehl, R. F.Trans. ASM 31, 613 (1943).Google Scholar
19Molinder, G., Acta Metall. 4, 565 (1956).CrossRefGoogle Scholar
20Christian, J. W.The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1965), p. 691.Google Scholar
23Steinmetz, P., Dupre, B., and Roques, B., J. Less Common Metals 53, 43 (1977).CrossRefGoogle Scholar
22Muramatsu, Y., Roux, F., and Vignes, A., Trans. Jpn. Inst. Met. 16, 61 (1975).CrossRefGoogle Scholar
23Nicolet, M. A. and Lau, S. S. in VLSI Electronics Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic, New York, 1983), Vol. 6, p. 330.Google Scholar
24d'Heurle, F. M. and Gas, P.J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
25Hutchins, G. and Shepela, A.Thin Solid Films 18, 343 (1973).CrossRefGoogle Scholar
26Ziegler, J.Mayer, J.Kircher, C. and Tu, K. N.J. Appl. Phys. 44, 3851 (1973).Google Scholar
27Petersson, C. S.Baglin, J. E.Hammer, W.d'Heurle, F. M., Kuan, T. S., Odhomari, I.Pires, J. de Sousa, and Tove, P.J. Appl. Phys. 50, 3357 (1979).Google Scholar
28Petersson, C. S.Anderson, R.Baglin, J. E.Dempsey, J.Hammer, W.d'Heurle, F. M., and Placa, S. J. La, J. Appl. Phys. 51, 373 (1980).CrossRefGoogle Scholar
29Anderson, R.Baglin, J. E.Dempsey, J.Hammer, W.d'Heurle, F. M., and Petersson, C. S.Appl. Phys. Lett. 35, 285 (1979).Google Scholar
30Baglin, J. E.d'Heurle, F. M., and Petersson, C. S. in Thin Film Interfaces and Interactions, edited by Baglin, J. E. and Poate, J. (The Electrochemical Society, Princeton, NJ, 1980), p. 341.Google Scholar
31Baglin, J. E.d'Heurle, F. M., and Petersson, C. S.Appl. Phys. Lett. 36, 594 (1980).CrossRefGoogle Scholar
32Thompson, R. D.Tsaur, B. Y. and Tu, K. N.Appl. Phys. Lett. 38, 535 (1981).CrossRefGoogle Scholar
33Petersson, C. S.Baglin, J. E.Dempsey, J.d'Heurle, F. M., and Placa, S. La, J. Appl. Phys. 53, 4866 (1982).Google Scholar
34Eizenberg, M. and Tu, K. N.J. Appl. Phys. 53, 6886 (1982).Google Scholar
35Petersson, C. S. and d'Heurle, F. M. (unpublished).Google Scholar
36d'Heurle, F. M., IBM Research Report No. RC 10422, Yorktown Heights, New York 10598, 1983.Google Scholar
37d'Heurle, F. M. and Petersson, C. S.Thin Solid Films 128, 283 (1985).Google Scholar
38d'Heurle, F. M., Anfiteatro, D. D.Deline, V. R. and Finstad, T. G.Thin Solid Films 128, 107 (1985).Google Scholar
39Finstad, T. G.Anfiteatro, D. D.Deline, V. R.d'Heurle, F. M., Gas, P.Moruzzi, V. L.Schwarz, K. and Tersoff, J.Thin Solid Films 135, 229 (1986).CrossRefGoogle Scholar
40Majni, G.Costato, M.Panini, F. and Celotti, G.J. Phys. Chem. Solids 46, 631 (1985).CrossRefGoogle Scholar
41Gas, P.d'Heurle, F. M., LeGoues, F. K. and LaPlaca, S. J.J. Appl. Phys. 59, 3458 (1986).CrossRefGoogle Scholar
42Tsaur, B. Y. and Nicolet, M. A.Appl. Phys. Lett. 35, 225 (1979).Google Scholar
43Tsaur, B. Y. and Hung, L. S.Appl. Phys. Lett. 37, 922 (1980).Google Scholar
44Lien, C.D.Nicolet, M.A. and Lau, S. S.Appl. Phys. A34, 249 (1984).Google Scholar
45Lien, C.D.Nicolet, M.A. and Lau, S. S.Phys. Status Solidi A8, 123 (1984).Google Scholar
46Wu, C. S.Scott, D. M.Lau, S. S.Wakita, A.Sigmon, T. W.Knapp, J. A. and Picraux, J. T.Mater. Res. Soc. Symp. Proc. 25, 93 (1984).Google Scholar
47Tabasky, M.Bulat, E. S.Ditchek, B. M.Sullivan, M. A. and Shatas, S.Mater. Res. Soc. Symp. Proc. 52, 271 (1986).Google Scholar
48d'Heurle, F. M., Hodgson, R. T. and Ting, C. Y.Mater. Res. Soc. Symp. Proc. 52, 261 (1986).Google Scholar
49Engstrom, I. (private communication). This compound has been previously referred to as IrSii.75, IrSi, 5, or Ir2Si3. Now that a structure corresponding to Ir3Si5 has been indentified, this latter formulation should be preferred.Google Scholar
50Foil, H.Ho, P. S. and Tu, K. N.Philos. Mag. A45, 31 (1982).Google Scholar
51Gibson, J. M.Tung, R. T.Philips, J. M. and Poate, J. M.Mater. Res. Soc. Symp. Proc. 25, 405 (1984).Google Scholar
52Liehr, M.Schmid, P. E.LeGoues, F. K. and Ho, P. S.J. Vac. Sci. Technol. A4, 855 (1986).Google Scholar
53d'Anterroches, C., Thin Solid Films 168, 751 (1986).Google Scholar
54Nylund, A.Acta Chem. Scand. 20, 2381 (1966).Google Scholar
55Tsaur, B. Y. and Nicolet, M.A.Appl. Phys. Lett. 37, 708 (1980).Google Scholar
56Searcy, A. and Finnie, L.J. Amer. Ceram. Soc. 45, 268 (1962).CrossRefGoogle Scholar
57Chart, T. G.High Temp High Pressures 5, 241 (1973).Google Scholar
58Pretorius, R.Harris, J. and Nicolet, M.A.Solid State Electron. 21, 667 (1978).CrossRefGoogle Scholar
59Barin, J. and Knacke, O.Thermodynamic Properties of Inorganic Substances (Springer, Berlin, 1973).Google Scholar
Barin, Mi.Knacke, O. and Kubaschewski, O.Thermodynamic Properties of Inorganic Substances, Supplement (Springer, Berlin, 1977).CrossRefGoogle Scholar
61Kubaschewski, O. and Alcock, C. B.Metallurgical Thermochemistry (Pergamon, Oxford, 1983).Google Scholar
62Burke, J.The Kinetics of Phase Transformations in Metals (Pergamon, Oxford, 1965), p. 113.Google Scholar
63Olowolafe, J. O.Nicolet, M.A. and Mayer, J. W.Thin Solid Films 38, 143 (1976).CrossRefGoogle Scholar
64Schubert, M.K.Kristallstrukturen zweicomponentiger Phasen (Springer, Berlin, 1964), p. 323.CrossRefGoogle Scholar
65Swalin, R.Thermodynamics of Metals (Wiley, New York, 1972), p. 24.Google Scholar
66Eustathopoulos, N. and Joud, S. C. in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1980), Vol. 4, p. 281.Google Scholar
67d'Heurle, F. M., Petersson, C. S.Baglin, J. E.LaPlaca, S. J. and Wong, C. Y. in J. Appl. Phys. 55, 4208 (1984).Google Scholar
68Majni, G.Valle, F. Delia, and Nobili, C.J. Phys. D17, L77 (1984).Google Scholar
69Pearson, W. B.The Crystal Chemistry and Physics of Metals and Alloys (Wiley-Interscience, New York, 1972).Google Scholar
70Hansen, M.Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 1040.Google Scholar
71Tu, K. N.Alessandrini, E.Chu, W. K.Krautle, M. and Mayer, J.Jpn. J. Appl. Phys. Suppl. 2, Pt. 1, 669 (1974).Google Scholar
72Tung, R. T.Gibson, J. M. and Poate, J.Phys. Rev. Lett. 50, 429 (1983).CrossRefGoogle Scholar
73Standard Diffraction Powder Pattern #17-881.Google Scholar
74Tu, K. N.Ottaviani, G.Gosele, V. and Foil, H.J. Appl. Phys. 54, 758 (1983).CrossRefGoogle Scholar
75Zheng, L. R.Hung, L. S. and Mayer, J. W.J. Vac. Sci. Technol. A1, 758 (1983).Google Scholar
76Gibbs, J. W. in The Scientific Papers of J. Willard Gibbs (Dover, New York, 1961), Vol. 1, p. 55.Google Scholar
77Lorimer, G. W. in Solid-State Phase Transformations, edited by Aaronson, H. I.Laughlin, D. E.Sekerka, R. F. and Wayman, C. M. (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 613.Google Scholar
78Semenchenko, V. K.Surface Phenomena in Metals and Alloys (Pergamon, New York, 1961), p. 35.Google Scholar
79Defay, R. and Prigogine, I.Tension superficielle et adsorption (Desoer, Liege, Belgium, 1951), p. 9.Google Scholar
80Darken, L. S. and Gurry, R. W.Physical Chemistry of Metals (McGraw-Hill, New York, 1953), p. 349.Google Scholar
81Swalin, R. W.Thermodynamics of Solids (Wiley, New York, 1972), p. 116.Google Scholar
82Hansen, M.Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 1126.Google Scholar
83Langer, H. and Watchel, E.Z. Metallk. 72, 769 (1981).Google Scholar
84Mofatt, W. G.The Handbook of Binary Phase Diagrams (General Electric, Schenectady, New York).Google Scholar
85Saitoh, S.Ishiwara, H.Asano, T. and Furukawa, S.Jpn. J. Appl. Phys. 20, 1649 (1981).Google Scholar
86Zur, A.McGill, T. C. and Nicolet, M.A.J. Appl. Phys. 57, 600 (1985).CrossRefGoogle Scholar
87Cahoon, E. C.Connie, C. M. and Pretorius, R.Mater. Res. Soc. Symp. Proc. 25, 57 (1984).Google Scholar
88Hansen, M.Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 1206.Google Scholar
89Elliott, R. P.Constitution of Binary Alloys (McGraw-Hill, New York, 1965), p. 522.Google Scholar
90Eshelby, J. D.Proc. R. Soc. A London Ser. A 241, 376 (1957).Google Scholar
91Handbook of Materials and Processesfor Electronics, edited by Harper, A. (McGraw-Hill, New York, 1970), p. 731.Google Scholar
92Handbook of Chemistry and Physics, edited by Hodgman, C. D.Weast, R. C. and Selby, S. M. (Chemical Rubber, Cleveland, 1955), p. 1985.Google Scholar
93Engineering Properties of Selected Ceramic Materials, edited by Lynch, J. F., Ruderer, C. G. and Duckworth, W. H. (The American Ceramic Society, Columbus, OH, 1966), pp. 5.7. 3-2 to 5.7.3-11.Google Scholar
94Angelillo, J.d'Heurle, F. M., Petersson, C. S. and Segmiiller, A.J. Vac. Sci. Technol. 17, 471 (1980).Google Scholar
95Zwikker, C.Physical Properties of Solid Materials (Pergamon, London, 1955), p. 90.Google Scholar
96Knapp, I. A. and Picraux, S. T.Mater. Res. Soc. Symp. Proc. 54, 261 (1986).Google Scholar
97Koleshko, V. M.Belitsky, V. F. and Khodin, A. A.Thin Solid Films 141, 277 (1987).Google Scholar
98Samsonov, G. V.High Temperature Compounds of the Rare-Earth Metals with Nonmetals (Consultant Bureau, New York, 1965).Google Scholar
99Elliott, R. P.Constitution of Binary Alloys (McGraw-Hill, New York, 1965), p. 823.Google Scholar
100Angilello, J.Baglin, J. E.d'Heurle, F. M., Petersson, C. S. and Segmiiller, A., in Thin Film Interfaces and Interactions, edited by Baglin, J. E. and Poate, J. (The Electrochemical Society, Princeton, NJ, 1980), p. 369.Google Scholar
101Baglin, J. E.d'Heurle, F. M., and Petersson, C. S.J. Appl. Phys. 52, 2841 (1981).CrossRefGoogle Scholar
102Lau, S. S.Pai, C. S. and Wu, C. S.Appl. Phys. Lett. 41, 77 (1982).CrossRefGoogle Scholar
103Iandelli, A.Palenzona, A. and Olcese, G. L.J. Less-Common Metals 64, 213 (1979).CrossRefGoogle Scholar
104Fan, J. C. and Anderson, C. H.J. Appl. Phys. 52, 4003 (1981).CrossRefGoogle Scholar
l05Engstrom, I.Structural Chemistry of Platinum Metal Silicides (Acta Universitatis Upsaliensis, Uppsala, 1970).Google Scholar
106Applebaum, A.Knoell, R. V. and Murarka, S. P.J. Appl. Phys. 57, 1322 (1985).Google Scholar
107Westwater, J. W.Am. Sci. 47, 427 (1959).Google Scholar
108Coulson, J. M. and Richardson, J. F.Chemical Engineering (Perga-mon, New York, 1964), Vol. 1, p. 242.Google Scholar
109Cremer, H. and Watkins, S. B.Chemical Engineering Practice, Vol. 7, Heat Transfer (Butterworths, London, 1963).Google Scholar
110Bardolle, J. in Interfaces et Surfaces en Metallurgie, edited by Martin, G., Levy, J.Oudar, J.Saada, G. and Saintfort, G. (Trans Tech Publications, Aedermannsdorf, Switzerland, 1975), p. 476.Google Scholar
111Lawless, K. R.Rep. Prog. Phys. 37, 231 (1974).CrossRefGoogle Scholar
112Gurp, G. van and Langereis, C.J. Appl. Phys. 46, 4301 (1975).Google Scholar
113Lau, S. S.Mayer, J. W. and Tu, K. N.J. Appl. Phys. 49, 4005 (1978).CrossRefGoogle Scholar
114Gurp, G. J. van, Weg, W. F. van der, and Sigurd, D.J. Appl. Phys. 49, 4011 (1978).Google Scholar
115d'Heurle, F. M., Petersson, C. S.Stolt, L. and Stritzker, B.J. Appl. Phys. 53, 5678 (1982).Google Scholar
116Appelbaum, A.Einzenberg, M. and Brener, R.Vacuum 33, 227 (1983).CrossRefGoogle Scholar
117Gas, P.LeGoues, F. K.Tardy, J. and d'Heurle, F. M., J. Appl. Phys. 61, 2203 (1987).CrossRefGoogle Scholar
118Hung, L. S.Gyulai, J.Mayer, J.Lau, S. S. and Nicolet, M.A.J. Appl. Phys. 54, 5076 (1983).Google Scholar
119Joubert, P. These, Universite de Rennes, September 1984.Google Scholar
120Joubert, P.J. Appl. Phys. 60, 2823 (1986).CrossRefGoogle Scholar
121Price, F. P. in Nucleation, edited by Zettlemoyer, A. C. (Marcel Dekker, New York, 1969), p. 406.Google Scholar
122Moffat, W. G.Pearsaland, G. W.Wulff, J.The Structure and Properties of Materials, Vol. I Structure (Wiley, New York, 1964), p. 130, Fig. 6.7.Google Scholar
123Breedon, J. E.Jackson, J. F.Marcinkowski, M. J. and Taylor, M. E.J. Mater. Sci. 8, 1701 (1973).Google Scholar
124Coffin, C. C. and Johnston, S.Proc. R. Soc. London Ser. A146, 564 (1934).Google Scholar
125Takamori, T.Messier, R. and Roy, R.J. Mater. Sci. 8, 1809 (1973).CrossRefGoogle Scholar
126Kikuchi, M.Matsuda, A.Kurosu, T.Mineo, A. and Callahan, J. K.Solid State Commun. 14, 731 (1974).CrossRefGoogle Scholar
127Wickersham, C. E.Bajor, G. and Greene, J. E.Solid State Commun. 27, 17 (1978).CrossRefGoogle Scholar
128Wickersham, C. E.Bajor, G. and Greene, J. E.J. Vac. Sci. Technol. A3, 336 (1985).Google Scholar
129Wickersham, C. E. and Poole, J. E.Mater. Lett. 4, 268 (1986).CrossRefGoogle Scholar
130Saarloos, Wim van and Weeks, J. D.Phys. Rev. Lett. 51, 1046 (1983).Google Scholar
131Bradley, R. M.J. Appl. Phys. 60, 3146 (1986).Google Scholar
132Gas, P.Tardy, J.LeGoues, F. K. and d'Heurle, F. M., Appl. Phys. Lett. 50, 1135 (1987).CrossRefGoogle Scholar
133Thomas, O.Krusin-Elbaum, L., Gallo, T. and d'Heurle, F. M. (unpublished).Google Scholar