Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T18:47:06.977Z Has data issue: false hasContentIssue false

Metal–oxide films with magnetically-modulated nanoporous architectures

Published online by Cambridge University Press:  31 January 2011

Craig A. Grimes*
Affiliation:
Department of Electrical Engineering & Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
R. Suresh Singh
Affiliation:
Department of Electrical Engineering & Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Elizabeth C. Dickey
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Oomman K. Varghese
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

A magnetically-driven method for controlling nanodimensional porosity in sol-gel-derived metal–oxide films, including TiO2, Al2O3, and SnO2, coated onto ferromagnetic amorphous substrates, such as the magnetically-soft Metglas1 alloys, is described. On the basis of the porous structures observed dependence on external magnetic field, a model is suggested to explain the phenomena. Under well-defined conditions it appears that the sol particles coming out of solution, and undergoing Brownian motion, follow the magnetic field lines oriented perpendicularly to the substrate surface associated with the magnetic domain walls of the substrate; hence the porosity developed during solvent evaporation correlates with the magnetic domain size.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The Metglas alloys are a registered trademark of Honeywell Corporation. For product information see: http://www.electronicmaterials.com:80/businesses/sem/amorph/page512.htm.Google Scholar
2.Kajihara, K., Tanaka, K., Horao, K., and Soga, N., Jpn. J. Appl. Phys. 36, 5537 (1997).CrossRefGoogle Scholar
3.Regan, B.O. and Gratzel, M., Nature (London) 353, 737 (1991).CrossRefGoogle Scholar
4.Sato, K., Tsuzuki, A., Taoda, H., Torii, Y., Kato, T., and Butsugan, Y., J. Mater. Sci. 29, 5911 (1994).CrossRefGoogle Scholar
5.Harrison, P.G., Bailey, C., and Azelee, W., J. Catal. 186, 147 (1999).CrossRefGoogle Scholar
6.Safonova, O.V., Rumyantseva, M.N., Kozlov, R.I., Labeau, M., Delabouglise, G., Ryabova, L.I., and Gaskov, A.M., Mater. Sci. Eng., B 77, 159 (2000).CrossRefGoogle Scholar
7.Tschöpe, A. and Ying, J.Y., in Nanophase Materials (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994).Google Scholar
8.Graatzel, C.K., Jirousek, M., and Gratzel, M., J. Mol. Catal. 60, 375 (1990).CrossRefGoogle Scholar
9.Fujishima, A. and Honda, K., Nature (London) 238, 37 (1972).CrossRefGoogle Scholar
10.Dittrich, T., Weidmann, J., and Koch, F., Appl. Phys. Lett. 75, 3980 (1999).CrossRefGoogle Scholar
11.Pribat, D. and Valasco, G., Sens. Actuators 13, 173 (1988).CrossRefGoogle Scholar
12.Grimes, C.A., Kouzoudis, D., Dickey, E.C., Qian, D., Anderson, M.A., Shahidain, R., Lindsey, M., and Green, L., J. Appl. Phys. 87, 5341 (2000).CrossRefGoogle Scholar
13.Ito, Y., Biomaterials 20, 2333 (1999).CrossRefGoogle Scholar
14.Schwartz, Z., Martin, J.Y., Dean, D.D., Simpson, J., Cochran, D.L., and Boyan, B.D., J. Biomed. Mater. Res. 30(2), 145 (1996).3.0.CO;2-R>CrossRefGoogle Scholar
15.Boyan, B.D., Hummert, T.W., Dean, D.D., and Schwartz, Z., Biomaterials 17(2), 137 (1996).CrossRefGoogle Scholar
16.Webster, T.J., Siegel, R.W., and Bizios, R., Biomaterials 20(13), 1221 (1999).CrossRefGoogle Scholar
17.Ozer, N. and Lampert, C.M., Sol. Energy Mater. Sol. Cells 54(1–4), 147 (1998).CrossRefGoogle Scholar
18.Kajihara, K., Nakanishi, K., Tanaka, K., Hirao, K., and Soga, N., J. Am. Ceram. Soc. 81(10), 2670 (1998).CrossRefGoogle Scholar
19.Nishikawa, T., Nishida, J., Ookura, R., Nishimura, S., Wada, S., Karino, T., and Shimomura, M., Mater. Sci. Eng. C 10, 141 (1999).CrossRefGoogle Scholar
20.Templin, M., Franck, A., Du Chesne, A., Leist, A., Zhang, A., Ulrich, R., Schadler, V., and Weisner, U., Science 278, 1795 (1997).CrossRefGoogle Scholar
21.Zhao, D., Feng, J., Huo, Q., Melosh, N., Frederickson, G.H., Chmelka, B., and Stucky, G.D., Science 279, 548 (1998).CrossRefGoogle Scholar
22.Velev, O.D., Jede, T.A., Lobo, R.F., and Lenhoff, A.M., Nature 389, 447 (1997).CrossRefGoogle Scholar
23.Holland, B.T., Blanford, C.F., and Stein, A., Science 281, 538 (1998).CrossRefGoogle Scholar
24.Goossens, A., Maloney, E.L., and Schoonaw, J., Chemical Vapor Deposition 4, 109 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
25.Tatsuma, T., Ikezawa, A., Ohko, Y., Miwa, T., Matsue, T., and Fujishima, A., Adv. Mater. 12(12), 643 (2000).3.0.CO;2-7>CrossRefGoogle Scholar
26.Imhof, A. and Pine, D.J., Adv. Mater. 10, 697 (1998).3.0.CO;2-M>CrossRefGoogle Scholar
27.Karthaus, O., Cieren, X., Maruyama, N., and Shimomura, M., Mater. Sci. Eng. C 10, 103 (1999).CrossRefGoogle Scholar
28.Widawski, G., Rawiso, B., and Francois, B., Nature 369, 3897 (1994).CrossRefGoogle Scholar
29.Francois, B., Pitois, O., and Francois, J., Adv. Mater. 7(12), 1041 (1995).CrossRefGoogle Scholar
30.Jenekhe, S.A. and Chen, X.L., Science 283, 372 (1999).CrossRefGoogle Scholar
31.O’Handley, R.C., J. Appl. Phys. 62, 35 (1987).CrossRefGoogle Scholar
32.Luborsky, F.E., in Ferromagnetic Materials, edited by Wohlforth, E.P. (North-Holland, Amsterdam, The Netherlands, 1980), pp. 451.Google Scholar
33.Suzuki, K., in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworths, London, U.K., 1983), pp. 74.CrossRefGoogle Scholar
34.Gutierrez, J., Barandiaran, J.M., and Nielsen, O.V., Phys. Status Solidi A 111, 279 (1989).CrossRefGoogle Scholar
35.Jackson, J.D., Classical Electrodynamics (John Wiley & Sons, New York, 1988), p. 191.Google Scholar
36.Wong, M.S., Sproul, W.D., and Rohde, S.L., Surf. Coat. Technol. 49, 121 (1991).CrossRefGoogle Scholar
37.Soohoo, R.F., Magnetic Thin Films (Harper & Row, New York, 1965), Chapter 3.Google Scholar
38.Cullity, B.D., Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972), Chapters 8 and 9.Google Scholar
39.Prutton, M., Thin Ferromagnetic Films (Butterworths, Washington, DC, 1964), p. 294.Google Scholar
40.Brinker, C.J. and Scherer, G.W., Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, San Diego, CA, 1990).Google Scholar
41.Barringer, E.A. and Bowen, K.H., Langmuir 1, 414 (1985).CrossRefGoogle Scholar
42.Maraner, A., Beatrice, C., and Mazzetti, P., J. Appl. Phys. 75, 4117 (1994).CrossRefGoogle Scholar
43.Heyderman, L.J., Chapman, J.N., Gibbs, M.R.J., and Shearwood, C., Magn. Magn. Mater. 148, 433 (1995).CrossRefGoogle Scholar
44.Filippov, B.N., Shmatov, G.A., and Dichenko, A.B., Phys. Met. Metallogr. 69, 1 (1990).Google Scholar
45.Szymura, S., Wyslocki, J.J., Yu, M., and Bala, H., Phys. Status Solidi A 141, 435 (1990).CrossRefGoogle Scholar
46.Meekison, C.D., Jakubovics, J.P., Coey, J.M.D., and Ding, J., J. Magn. Magn. Mater. 104–107, 1161 (1992).CrossRefGoogle Scholar
47.Turner, C.W., Ceram. Bull. 70, 1487 (1991).Google Scholar
48.Nelson, B.P. and Anderson, M.A., Langmuir 16, 6094 (2000).CrossRefGoogle Scholar
49.Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
50.Barringer, E.A. and Bowen, H.K., Langmuir 1, 420 (1985).CrossRefGoogle Scholar
51.Parks, G.A. and De Bruyn, P.L., J. Phys. Chem. 66, 967 (1962).CrossRefGoogle Scholar
52.Tschapek, M., Wasowski, C., and Sanchez, R.M.T., J. Electroanal. Chem. 74, 167 (1976).CrossRefGoogle Scholar
53.Fegley, B. Jr. and Barringer, E.A., in Better ceramics through chemistry, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Elsevier Science Publishing, New York, 1984), Vol. 32.Google Scholar
54.Clark, D.E., Dalzell, W.J., and Foltz, D.C., Ceram. Eng. Sci. Proc. 9, 1111 (1988).CrossRefGoogle Scholar
55.Krishna Rao, D.U. and Subbarao, E.C., Ceram. Bull 58, 467 (1979).Google Scholar
56.Hunter, R.J., Zeta potential in colloid science (Academic Press, New York, 1981).Google Scholar
57.Brinker, C.J., Hurd, A.J., Schunk, P.R., Frye, G.C., and Ashley, C.S., J. Non-Cryst. Solids 147, 148, 424 (1992).CrossRefGoogle Scholar
58.Iler, R.K., The chemistry of silica (Wiley, New York, 1979).Google Scholar
59.Glisenti, A., Bertoncello, R., Casarin, M., Marcolin, D., Granozzi, G., and Anglelini, E., J. Alloys Compd. 226, 213 (1995).CrossRefGoogle Scholar
60.Desai, T.A., Hansford, D.J., Kulinsky, L., Nashat, A.H., Rasi, G., Tu, J., Wang, Y., Zhang, M., and Ferrari, M., Biomed. Microdevices 2(1), 11 (1999).CrossRefGoogle Scholar
61.Ballantine, D.S., White, R.M., Martin, S.J., Ricco, A.J., Frye, G.C., Zellers, E.T., and Wohltjen, H., Acoustic Wave Sensors: Theory, Design, and Physicochemical Applications (Academic Press, Boston, MA, 1997).CrossRefGoogle Scholar
62.Grimes, C.A., Ong, K.G., Loiselle, K., Stoyanov, P.G., Kouzoudis, D., Liu, Y., Tong, C., and Tefiku, F., J. Smart Mater. Struct. 8, 639 (2000).CrossRefGoogle Scholar
63.Ong, K.G. and Grimes, C.A., J. Smart Mater. Struct. 9, 421 (2000).CrossRefGoogle Scholar