Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T07:54:25.342Z Has data issue: false hasContentIssue false

Inkjet printable silver dispersions: Effect of bimodal particle-size distribution on film formation and electrical conductivity

Published online by Cambridge University Press:  31 January 2011

Dan V. Goia*
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699
*
a)Address all correspondence to this author. e-mail: goiadanv@clarkson.edu
Get access

Abstract

Inks containing silver nanoparticles of 12 nm, 80 nm, and a 15%/85% mixture of the two sizes were used to evaluate the effect of particle size and size distribution on the electrical properties of sintered films. The silver layers deposited with a “drop-on-demand” inkjet printer were heated at temperatures ranging from 125 to 200 °C. The small particles formed less resistive films at 125 °C, while the larger ones provided better electrical conductivity above 150 °C. The inks containing mixed small and large particles yielded the most conductive silver films over the entire investigated temperature range. A mechanism explaining these results is proposed based on the evolution of film microstructure with temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kamyshny, A., Ben-Moshe, M., Aviezer, S., Magdassi, S.Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26, 281 (2005)CrossRefGoogle Scholar
2.Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E.Inkjet printing—Process and its applications. Adv. Mater. 21, 1 (2009)Google Scholar
3.van Osch, T.H.J., Perelaer, J., de Laat, A.W.M., Schubert, U.S.Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20, 343 (2008)Google Scholar
4.Service, R.F.Materials research society meeting: Lighting the way to speedier chips. Science 304, 674b (2004)Google ScholarPubMed
5.Sele, C.W., von Werne, T., Friend, R.H., Sirringhaus, H.Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv. Mater. 17, 997 (2005)CrossRefGoogle Scholar
6.Bidoki, S.M., Lewis, D.M., Clark, M., Vakorov, A., Millner, P.A., McGorman, D.Ink-jet fabrication of electronic components. J. Micromech. Microeng. 17, 967 (2007)CrossRefGoogle Scholar
7.Bharathan, J., Yang, Y.Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl. Phys. Lett. 72, 2660 (1998)Google Scholar
8.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P.High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000)CrossRefGoogle ScholarPubMed
9.Nur, H.M., Song, J.H., Evans, J.R.G., Edirisinghe, M.J.Ink-jet printing of gold conductive tracks. J. Mater. Sci.-Mater. Electron. 13, 213 (2002)CrossRefGoogle Scholar
10.Calvert, P.Inkjet printing for materials and devices. Chem. Mater. 13, 3299 (2001)CrossRefGoogle Scholar
11.Lee, H.H., Chou, K.S., Huang, K.C.Inkjet printing of nanosized silver colloids. Nanotechnology 16, 2436 (2005)Google Scholar
12.Lee, K.J., Jun, B.H., Kim, T.H., Joung, J.Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17, 2424 (2006)Google Scholar
13.Kim, D., Moon, J.Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem. Solid-State Lett. 8, J30 (2005)CrossRefGoogle Scholar
14.Wang, T., Chen, X., Lu, G.Q., Lei, G.Y.Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333 (2007)Google Scholar
15.Dearden, A.L., Smith, P.J., Shin, D.Y., Reis, N., Derby, B., O'Brien, P.A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks. Macromol. Rapid Commun. 26, 315 (2005)CrossRefGoogle Scholar
16.Perelaer, J., de Gans, B.J., Schubert, U.S.Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18, 2101 (2006)CrossRefGoogle Scholar
17.Gamerith, S., Klug, A., Scheiber, H., Scherf, U., Moderegger, E., List, E.J.W.Direct ink-jet printing of Ag–Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv. Funct. Mater. 17, 3111 (2007)Google Scholar
18.Van der Vaart, N.C., Lifka, H., Budzelaar, F.P.M., Rubingh, J.E.J.M., Hoppenbrouwers, J.J.L., Dijksman, J.F., Verbeek, R.G.F.A., Woudenberg, R.V., Vossen, F.J., Hiddink, M.G.H., Rosink, J.J.W.M., Bernards, T.N.M., Giraldo, A., Young, N.D., Fish, D.A., Childs, M.J., Steer, W.A., Lee, D., George, D.S.Towards large-area full-color active-matrix printed polymer OLED television. J. Soc. Inf. Disp. 13, 9 (2005)CrossRefGoogle Scholar
19.Comiskey, B., Albert, J.D., Yoshizawa, H., Jacobson, J.An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253 (1998)Google Scholar
20.Redinger, D., Molesa, S., Shong, Y., Farschi, R., Subramanian, V.An ink-jet-deposited passive component process for RFID. IEEE Trans. Electron Devices 51, 1978 (2004)CrossRefGoogle Scholar
21.Volkman, S.K., Pei, Y., Redinger, D., Yin, S., Subramanian, V.Ink-jetted silver/copper conductors for printed RFID applicationsFlexible Electronics 2004—Materials and Device Technology edited by N. Fruehauf, B.R. Chalamala, B.E. Gnade, and J. Jang (Mater. Res. Soc. Symp. Proc 814, Warrendale, PA 2004)I7.8.Google Scholar
22.Jung, H., Cho, S-H., Joung, J., Oh, Y.S.Studies on inkjet-printed conducting lines for electronic devices. J. Electron. Mater. 36, 1211 (2007)CrossRefGoogle Scholar
23.Hsu, S.L.C., Wu, R.T.Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Mater. Lett. 61, 3719 (2007)CrossRefGoogle Scholar
24.Caglar, U., Kaija, K., Mansikkamaki, P.Environmental testing of fine interconnections ink jet-printed on flexible organic substrates. J. Imaging Sci. Technol. 53, 041204 (2009)Google Scholar
25.Andreescu, D., Eastman, C., Balantrapu, K., Goia, D.V.A simple route for manufacturing highly dispersed silver nanoparticles. J. Mater. Res. 22, 2488 (2007)CrossRefGoogle Scholar
26.Balantrapu, K., Goia, D.V.Silver nanoparticles for printable electronics and biological applications. J. Mater. Res. 24, 2828 (2009)Google Scholar
27.Dong, H., Carr, W.W., Morris, J.F.An experimental study of drop-on-demand formation. Phys. Fluids 18, 072102 (2006)Google Scholar
28.Tsai, M.H., Hwang, W.S., Chou, H.H., Hsieh, P.H.Effects of pulse voltage on inkjet printing of a silver nanopowder suspension. Nanotechnology 19, 335304 (2008)CrossRefGoogle Scholar
29.Deravi, L.F., Gerdon, A.E., Cliffel, D.E., Wright, D.W., Sumerel, J. L.Output analysis of materials inkjet printer. Appl. Phys. Lett. 91, 113114 (2007)CrossRefGoogle Scholar
30.Topsoe, H. Geometric factors in four point resistivity measurement, Bulletin No. 472–13 (Internet Version 1968, http://www.four-point-probes.com/haldor.html)Google Scholar
31.Fang, Z.Z., Wang, H.Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53, 326 (2008)Google Scholar
32.Dominguez, O., Champion, Y., Bigot, J.Liquidlike sintering behavior of nanometric Fe and Cu powders: Experimental approach. Metall. Mater. Trans. A 29, 2941 (1998)CrossRefGoogle Scholar
33.German, R.M.Sintering Theory and Practice (Wiley-Interscience, New York 1996)3Google Scholar
34.German, R.Prediction of sintered density for bimodal powder mixtures. Metall. Mater. Trans. A 23, 1455 (1992)Google Scholar
35.Coble, R.L.Effects of particle-size distribution in initial-stage sintering. J. Am. Ceram. Soc. 56, 461 (1973)Google Scholar
36.Ma, J., Lim, L.C.Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts. J. Eur. Ceram. Soc. 22, 2197 (2002)Google Scholar
37.Ting, J.M., Lin, R.Y.Effect of particle-size distribution on sintering. J. Mater. Sci. 29, 1867 (1994)CrossRefGoogle Scholar
38.Pan, J., Le, H., Kucherenko, S., Yeomans, J.A.A model for the sintering of spherical particles of different sizes by solid state diffusion. Acta Mater. 46, 4671 (1998)Google Scholar
39.Eric, L., Rishi, R.A.J.Packing and sintering of two-dimensional structures made from bimodal particle size distributions. J. Am. Ceram. Soc. 70, 843 (1987)Google Scholar