Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T10:19:49.224Z Has data issue: false hasContentIssue false

Initial stage Fe-clustering in the Au–Fe spin-glass system

Published online by Cambridge University Press:  31 January 2011

Chen-Chia Chou
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
C.M. Wayman
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
Get access

Abstract

Aging experiments were conducted to study initial state Fe-clustering in Au–Fe alloys with Fe content from 10.7 to 33%. Information derived from experiments using transmission electron microscopy, electron diffraction, and high resolution electron microscopy suggests the coexistence of short-range-order and Fe-clusters. At early stages of aging, lobe-like and/or rod-shaped strain contrast images, identified as clusters, were revealed after specimens were further cleaned by an ion-miller. The (11/20) special point diffuse reflections were prominent in the as-quenched condition and/or early stage aging, and the intensities decrease gradually as aging proceeds. After a certain period, (11/20) diffuse reflections disappear but strain contrast images still remain similar. This suggests that the strain contrast images are not related to the (11/20) diffuse reflections. The cluster characteristics of Au–Fe alloys are differentiated from those of Al–Cu and Cu–Be based upon theoretical calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Beck, P. A., Metall. Trans. 2, 2015 (1971).CrossRefGoogle Scholar
2.Violet, C. E. and Borg, R. J., Phys. Rev. Lett. 51, 1073 (1983).CrossRefGoogle Scholar
3.Violet, C. E. and Borg, R. J., Phys. Rev. Lett. 52, 2098 (1984).CrossRefGoogle Scholar
4.Sarkissian, B. V. B., J. Phys. F: Metal Phys. 11, 191 (1981).Google Scholar
5.Whittle, G. L. and Campbell, S. J., J. Phys. F: Metal Phys. 15, 693 (1985).CrossRefGoogle Scholar
6.Dartyge, E., Bouchait, H., and Monod, P., Phys. Rev. B 25, 6995 (1982).CrossRefGoogle Scholar
7.Chen, H., Anderson, J., Ohshima, K., Okajima, H., and Harada, J., Phys. Rev. B 42, 2342 (1990).CrossRefGoogle Scholar
8.Marsh, C. M., Polat, S., and Chen, H., Scripta Metall. 21, 619 (1987).CrossRefGoogle Scholar
9.Ju, C. P., Wayman, C. M., and Chen, H., Scripta Metall. 21, 59 (1987).CrossRefGoogle Scholar
10.Chou, C. C., Chen, H., and Wayman, C. M., Mater. Sci. Eng. A 123, 21 (1990).Google Scholar
11.Beck, P. A., Phys. Rev. B 32, 7255 (1985).CrossRefGoogle Scholar
12.Beck, P. A., Phys. Rev. B 28, 2516 (1983).CrossRefGoogle Scholar
13.Borg, R. J., Dienes, G. J., and Lyles, R. L., Radiat. Eff. 33, 105 (1977).Google Scholar
14.Stobbs, W. M., Phys. Status Solidi A 91, 69 (1985).CrossRefGoogle Scholar
15.Stobbs, W. M. and Stobbs, S. H.: Philos. Mag. B 53, 537 (1986).CrossRefGoogle Scholar
16.Yoshida, Y., Langmayr, F., Fratz, P., and Vogl, G., Phys. Rev. B 39, 6395 (1989).CrossRefGoogle Scholar
17.Cable, J. W., Parette, G., and Tsunoda, Y., Phys. Rev. B 36, 8467 (1987).CrossRefGoogle Scholar
18.Chou, C. C., Ph.D. Dissertation, University of Illinois (1990).Google Scholar
19.Otsuka, K., Kubo, H., and Wayman, C. M., Metall. Trans. 12A, 595 (1981).CrossRefGoogle Scholar
20.Ashby, M. F. and Brown, L. M., Philos. Mag. 8, 1083 and 1649 (1963).CrossRefGoogle Scholar
21.Phillips, V. A., Acta Metall. 21, 219 (1973); 23, 751 (1975).CrossRefGoogle Scholar
22.Sato, T. and Takahashi, T., Trans. JIM 24 (6), 386 (1983).CrossRefGoogle Scholar
23.Yoshida, H., Hashimoto, H., Yokota, Y., and Ajika, N., Trans. JIM 24 (6), 378 (1983).CrossRefGoogle Scholar
24.Howe, J. M., Basile, D. P., Prabhu, N., and Hatalis, M. K., Acta Crystallogr. A 44, 449 (1988).CrossRefGoogle Scholar
25.Chevalier, J. P. and Stobbs, W. M., Acta Metall. 27, 285 and 1197 (1979).CrossRefGoogle Scholar
26.Chou, C. C. and Wayman, C. M., Mater. Charact. (1990, in press).Google Scholar
27.deFontaine, D., Solid State Phys. 34, 73 (1979).CrossRefGoogle Scholar
28.Tanaka, N. and Cowley, J. M., Acta Crystallogr. A 43, 337 (1987).CrossRefGoogle Scholar
29.Khachaturyan, A. G. and Laughlin, D. E., Acta Metall. 38, 1823 (1988).Google Scholar
30.Rakers, L. D., M. S. Thesis, University of Illinois (1987).Google Scholar
31.Khachaturyan, A. G., Theory of Structural Transformation in Solids (John Wiley & Sons, New York, 1983).Google Scholar
32.Khachaturyan, A. G., Semenovskaya, S. V., and Morris, J. W., Jr., Acta Metall. 36, 1563 (1988).Google Scholar
33.Khachaturyan, A. G., Sov. Phys. Solid State 8, 2163 (1967).Google Scholar
34.Martin, J. W. and Doherty, R. D., Stability of Microstructure in Metallic Systems (Cambridge University Press, Cambridge, London, 1976), p. 175.Google Scholar
35.Ardell, A. J., Acta Metall. 16, 511 (1968).CrossRefGoogle Scholar
36.Rastogi, P. K. and Ardell, A. J., Acta Metall. 19, 321 (1971).CrossRefGoogle Scholar
37.Speich, G. R. and Oriani, R. A., TMS-AIME 233, 623 (1965).Google Scholar
38.Smith, C. S., Metal Interfaces (ASM, Metals Park, OH, 1952), p. 65.Google Scholar