Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T04:26:35.968Z Has data issue: false hasContentIssue false

Infrared optical properties of aged porous GaAs

Published online by Cambridge University Press:  31 January 2011

S. Zangooie
Affiliation:
Center for Microelectronic and Optical Materials Research, and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588
M. Schubert
Affiliation:
Center for Microelectronic and Optical Materials Research, and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588
T. E. Tiwald
Affiliation:
J.A. Woollam Co., Inc., 645 M Street, Suite 102, Lincoln, Nebraska 68508
J. A. Woollam*
Affiliation:
Center for Microelectronic and Optical Materials Research, and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588
*
a)Address all correspondence to this author.
Get access

Abstract

Aging properties of porous GaAs were investigated nondestructively using variable angle of incidence infrared spectroscopic ellipsometry. In addition to the thickness and volume porosity, properties of the solid part of the porous material are investigated in terms of the long-wavelength dielectric function and chemical composition. The high sensitivity is employed to detect and identify infrared resonant absorptions related to different vibration modes of cubic and amorphous As2O3. Resonances centered at 333.3, 480, 785.8, 838, and 1045.5 cm−1 are from cubic As2O3, whereas resonances centered at 350, 490, and 808.5 cm−1 are from amorphous As2O3.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2.Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1990).CrossRefGoogle Scholar
3.Zangooie, S., Persson, P.O.A., Hilfiker, J.N., Hultman, L., and Arwin, H., J. Appl. Phys. 87, 8497 (2000).CrossRefGoogle Scholar
4.Zangooie, S., Woollam, J.A. and Arwin, H., J. Mater. Res. 15, 1860 (2000).CrossRefGoogle Scholar
5.Oskam, G., Natarajan, A., Searson, P.C., and Ross, F.M., Appl. Surf. Sci. 119, 160 (1997).CrossRefGoogle Scholar
6.Schmuki, P., Fraser, J., Vitus, C.M., Graham, M.J., and Isaacs, H.S., J. Electrochem. Soc. 143, 3316 (1996).CrossRefGoogle Scholar
7.Zangooie, S. and Woollam, J.A., J. Mater. Sci. Lett. (in press).Google Scholar
8.Schmuki, P., Lockwood, D.J., Labbé, H.J., and Fraser, J.W., Appl. Phys. Lett. 69, 1620 (1996).CrossRefGoogle Scholar
9.Rojas-Löpez, M., Vidal, M.A., Navarro-Contreras, H., Gracia-Jiménez, J.M., Gömez, E., and Silva-González, R., J. Appl. Phys. 87, 1270 (2000).CrossRefGoogle Scholar
10.Zangooie, S., Schubert, M., Trimble, C., Thompson, D.W., and Woollam, J.A., Appl. Opt. (in press).Google Scholar
11.Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light (North-Holland, Amsterdam, The Netherlands, 1976).Google Scholar
12.Nakano, H., Sakamoto, T., and Taniguchi, K., J. Appl. Phys. 83, 1384 (1998).CrossRefGoogle Scholar
13.Adachi, S, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific Publishing Co., 1994).CrossRefGoogle Scholar
14.Irmer, G., Wenzel, M., and Monecke, J., Phys. Rev. B 56, 9524 (1997).CrossRefGoogle Scholar
15.Zangooie, S., Schubert, M., Thompson, D.W., and Woollam, J.A. (unpublished).Google Scholar
16.Yu, P.Y. and Cardona, M., Fundamentals of Semiconductors: Physics and Materials Properties (Springer-Verlag, Berlin, Germany, 1996), Chap. 6.CrossRefGoogle Scholar
17.Humliček, J., Henn, R., and Cardona, M., Appl. Phys. Lett. 69, 2581 (1996).CrossRefGoogle Scholar
18.Aspnes, D.E., Thin Solid Films 89, 249 (1982).CrossRefGoogle Scholar
19.Berreman, D.W., Phys. Rev. 130, 2193 (1963).CrossRefGoogle Scholar
20.Zollner, St., Carrejo, J.P., Tiwald, T.E., and Woollam, J.A., Phys. Status Solidi 208, R3 (1998).3.0.CO;2-X>CrossRefGoogle Scholar
21.Palik, E.D., Ginsburg, N., Holm, R.T., and Gibson, J.W., J. Vac. Sci. Technol. 15, 1488 (1978).CrossRefGoogle Scholar
22.Vaüko, A., Lezal, D., and Srb, I., J. Non-Cryst. Solids 4, 311 (1970).Google Scholar
23.Allwood, D.A., Carline, R.T., Mason, N.J., Pickering, C., Tanner, B.K., and Walker, P.J., Thin Solid Films 364, 33 (2000).CrossRefGoogle Scholar
24.Papatheodorou, G.N. and Solin, S.A., Phys. Rev. B 13, 1741 (1976).CrossRefGoogle Scholar
25.Flynn, E.J., Solin, S.A., and Papatheodorou, G.N., Phys. Rev. B 13, 1752 (1976).CrossRefGoogle Scholar