Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T03:14:58.626Z Has data issue: false hasContentIssue false

Impedance spectroscopy of grain boundaries in nanophase ZnO

Published online by Cambridge University Press:  03 March 2011

J. Lee
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
J.-H. Hwang
Affiliation:
Department of Materials Science, Northwestern University, Evanston, Illinois 60208
J.J. Mashek
Affiliation:
Department of Materials Science, Northwestern University, Evanston, Illinois 60208
T.O. Mason
Affiliation:
Department of Materials Science, Northwestern University, Evanston, Illinois 60208
A.E. Miller
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
R.W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Sintered compacts of nanophase ZnO (∼60 nm average grain size, presintered at 600 °C) were made from powders (∼13 nm) prepared by the gas-condensation technique. Impedance spectra were taken as a function of temperature over the range 450–600 °C and as a function of oxygen partial pressure over the range 10−3−1 atm (550 and 600 °C only). The activation energy was determined to be 55 kJ/mole (0.57 eV) and was independent of oxygen partial pressure. The oxygen partial pressure exponent was −1/6. Impedance spectra exhibited nonlinear I-V behavior, with a threshold of approximately 6 V. These results indicate that grain boundaries are governing the electrical properties of the compact. Ramifications for oxygen sensing and for grain boundary defect characterization are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, 1981). p. 15.Google Scholar
2Birringer, R., Gleiter, H., Klein, H.P., and Marquardt, P., Phys. Lett. 102A, 365 (1984).CrossRefGoogle Scholar
3Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst.Met. 27, 43 (1986).Google Scholar
4Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, Li, Ting, Lu, and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
5Siegel, R. W. and Eastman, J. A., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L.E., Polk, D.E., Siegel, R.W., and Kear, B.H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 3.Google Scholar
6Mayo, M.J., Siegel, R.W., Liao, Y.X., and Nix, W.D., J. Mater.Res. 7, 973 (1992).CrossRefGoogle Scholar
7Hahn, H., Logas, J., and Averback, R.S., J. Mater. Res. 5, 609 (1990).CrossRefGoogle Scholar
8Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., Jpn. J. Appl. Phys. 2, 702 (1963).CrossRefGoogle Scholar
9Granqvist, C. G. and Buhrman, R.A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
10Thölen, A.R., Acta Metall. 27, 1765 (1979).CrossRefGoogle Scholar
11Siegel, R.W., Mater. Sci. Eng. A 168, 189 (1993).CrossRefGoogle Scholar
12Hahn, H., Logas, J. C., Höfler, H. J., and Averback, R. S., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Nelson, D. L., and Bernholc, J. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 569.Google Scholar
13Huang, Y. K., Menovsky, A. A., and de Boer, F. R., Nanostructured Materials 2, 505 (1993).CrossRefGoogle Scholar
14Takeuchi, T., Ado, K., Asai, T., Kageyama, H., Saito, Y., Masquelier, C., and Nakamura, O., J. Am. Ceram. Soc. 77, 1665 (1994).CrossRefGoogle Scholar
15Gupta, T.K., J. Am. Ceram. Soc. 73, 1817 (1990).CrossRefGoogle Scholar
16Kröger, F. A., Chemistry of Imperfect Crystals, 2nd ed. (North-Holland, Amsterdam, 1974).Google Scholar
17Hagemark, K.I., J. Solid State Chem. 16, 293 (1976).CrossRefGoogle Scholar
18Mahan, G. D., J. Appl. Phys. 54, 3825 (1976).CrossRefGoogle Scholar
19Eizinger, R., in Grain Boundaries in Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (Elsevier, New York, 1982), p. 342.Google Scholar
20Macdonald, J.R., Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, New York, 1987).Google Scholar
21Ziegler, E., Heinrich, A., Opperman, H., and Stover, G., Phys. Status Solidi A 66, 635 (1981).CrossRefGoogle Scholar
22Heiland, G., Mollwo, E., and Stockman, F., in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1959), p. 191.Google Scholar
23Pikes, G. E., Kurtz, S. R., and Dourly, P. L., J. Appl. Phys. 57, 5512 (1985).CrossRefGoogle Scholar
24Blatter, G. and Greuter, F., Phys. Rev. B 33, 3952 (1986).CrossRefGoogle Scholar
25Seitz, M., Hampton, F., and Richmond, W., in Advances in Ceramics, edited by Yan, M. F. and Heuer, A. H. (American Ceramic Society, Westerville, OH, 1983), p. 60.Google Scholar
26Baumbach, H.H.V. and Wagner, C., Z. Phys. Chem. B 22, 199 (1933).CrossRefGoogle Scholar
27Sukkar, M. H. and Tuller, H. L., in Advances in Ceramics, edited by Yan, M. F. and Heuer, A. H. (American Ceramic Society, Westerville, OH, 1983), p. 71.Google Scholar
28Gleiter, C., Nowotny, J., and Rekas, M., Appl. Phys. A 53, 310 (1991).CrossRefGoogle Scholar
29Stubican, V.S., Philos. Mag. A 68, 809 (1993).CrossRefGoogle Scholar