Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T17:09:03.566Z Has data issue: false hasContentIssue false

Experimental investigation on effects of varying volume fractions of SiC nanoparticle reinforcement on microstructure and mechanical properties in friction-stir-welded dissimilar joints of AA2024-T351 and AA7075-T651

Published online by Cambridge University Press:  28 January 2019

Karinanjanapura Shivamurthy Anil Kumar*
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
Siddlingalli Mahadevappa Murigendrappa
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
Hemantha Kumar*
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
*
a)Address all correspondence to this author. e-mail: anilkumar_aks@rediffmail.com
Get access

Abstract

Effects of varying volume fractions of SiC nanoparticle (SiCNP) reinforcement on microstructure and mechanical properties of dissimilar AA2024-T351 and AA7075-T651 joints by friction stir welding (FSW) have been investigated experimentally. A rectangular section edge groove was prepared at the adjoining surfaces of the two plates with the butt configuration before FSW. Initially, four fractional volumes with 0, 5, 8, and 13% of SiCNP are reinforced into the grooves of width, 0, 0.2, 0.3, and 0.5 mm and the FSW was performed with the first and second pass to obtain metal matrix nanocomposite (MMNC) at the weld nugget zone (WNZ). The characterization of microstructure specimens was investigated using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The FSW joint specimen produced with 5 vol% fraction of SiCNP for second pass processing observes a defect-free, homogeneous distribution of SiCNP with a mean grain size of about 2–3 µm at the WNZ and weld joints higher in tensile strength, 411 MPa, yield strength, 252 MPa, and percentage elongation, 14.3. The result shows that varying volume fractions (5, 8, 13%) of the SiCNP after the FSW second pass led to significant grain refinement at the WNZ and higher mechanical properties compared with FSW specimens prepared without SiCNP. Higher hardness of 150 Hv was observed in the WNZ for specimen produced with 13 vol% fraction SiCNP.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith, P., and Dawes, C.J.: Friction stir welding. GB Patent Application No. 9125978 and U.S. Patent No. 5460317, October 24, 1995.Google Scholar
Mishra, R.S. and Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng., R 50, 1 (2005).CrossRefGoogle Scholar
Yang, Y., Lan, J., and Li, X.: Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Eng., A 380, 378 (2004).CrossRefGoogle Scholar
GU, W.L.: Bulk Al/SiC nanocomposite prepared by ball milling and hot pressing method. Trans. Nonferrous Met. Soc. China 16, 398 (2006).CrossRefGoogle Scholar
Carreño-Gallardo, C., Estrada-Guel, I., López-Meléndez, C., and Martínez-Sánchez, R.: Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. J. Alloys Compd. 586, 68 (2014).CrossRefGoogle Scholar
Min, S.O.: Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans. Nonferrous Met. Soc. China 19, 1400 (2009).Google Scholar
Ma, Z.Y., Li, Y.L., Liang, Y., Zheng, F., Bi, J., and Tjong, S.C.: Nanometric Si3N4 particulate-reinforced aluminum composite. Mater. Sci. Eng., A 219, 229 (1996).CrossRefGoogle Scholar
Rahimian, M., Parvin, N., and Ehsani, N.: Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mater. Sci. Eng., A 527, 1031 (2010).CrossRefGoogle Scholar
Rahimian, M., Parvin, N., and Ehsani, N.: Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50, 39 (2002).Google Scholar
Kawabe, A., Oshida, A., Kobayashi, T., and Toda, H.: Fabrication process of metal matrix composite with nano-size SiC particle produced by vortex method. J. Jpn. Inst. Light Met. 49, 149 (1999).CrossRefGoogle Scholar
Don-Hyun, C., Yong-Il, K., Dae-Up, K., and Seung-Boo, J.U.: Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Trans. Nonferrous Met. Soc. China 22, 614 (2012).Google Scholar
Akramifard, H.R., Shamanian, M., Sabbaghian, M., and Esmailzadeh, M.: Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 54, 838 (2014).10.1016/j.matdes.2013.08.107CrossRefGoogle Scholar
Wang, W., Shi, Q.Y., Liu, P., Li, H.K., and Li, T.: A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J. Mater. Process. Technol. 209, 2099 (2009).10.1016/j.jmatprotec.2008.05.001CrossRefGoogle Scholar
Dolatkhah, A., Golbabaei, P., Givi, M.B., and Molaiekiya, F.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458 (2012).CrossRefGoogle Scholar
Azizieh, M., Kokabi, A.H., and Abachi, P.: Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater. Des. 32, 2034 (2011).10.1016/j.matdes.2010.11.055CrossRefGoogle Scholar
Sathiskumar, R., Murugan, N., Dinaharan, I., and Vijay, S.J.: Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Mater. Charact. 84, 16 (2013).CrossRefGoogle Scholar
Abbasi, M., Abdollahzadeh, A., Bagheri, B., and Omidvar, H.: The effect of SiC particle addition during FSW on microstructure and mechanical properties of AZ31 magnesium alloy. J. Mater. Eng. Perform. 24, 5037 (2015).CrossRefGoogle Scholar
Bahrami, M., Dehghani, K., and Givi, M.K.: A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Mater. Des. 53, 217 (2014).CrossRefGoogle Scholar
Tabasi, M., Farahani, M., Givi, M.B., Farzami, M., and Moharami, A.: Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles. Int. J. Adv. Des. Manuf. Technol. 86, 705 (2016).10.1007/s00170-015-8211-yCrossRefGoogle Scholar
Liu, H., Hu, Y., Zhao, Y., and Fujii, H.: Microstructure and mechanical properties of friction stir welded AC4A + 30 vol% SiCp composite. Mater. Des. 65, 395 (2015).CrossRefGoogle Scholar
Byung-Wook, A.H., Don-Hyun, C.H., Yong-Hwan, K.I., and Seung-Boo, J.U.: Fabrication of SiCp/AA5083 composite via friction stir welding. Trans. Nonferrous Met. Soc. China 22, 634 (2012).Google Scholar
Pantelis, D.I., Karakizis, P.N., Daniolos, N.M., Charitidis, C.A., Koumoulos, E.P., and Dragatogiannis, D.A.: Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater. Manuf. Processes 31, 264 (2016).10.1080/10426914.2015.1019095CrossRefGoogle Scholar
Sun, Y.F. and Fujii, H.: The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints. Mater. Sci. Eng., A 528, 5470 (2011).CrossRefGoogle Scholar
Hamdollahzadeh, A., Bahrami, M., Nikoo, M.F., Yusefi, A., Givi, M.B., and Parvin, N.: Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing. J. Manuf. Process. 20, 367 (2015).CrossRefGoogle Scholar
El-Rayes, M.M. and El-Danaf, E.A.: The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J. Mater. Process. Technol. 212, 1157 (2012).CrossRefGoogle Scholar
Bahrami, M., Givi, M.K., Dehghani, K., and Parvin, N.: On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater. Des. 53, 519 (2014).CrossRefGoogle Scholar
Salehi, M., Saadatmand, M., and Mohandesi, J.A.: Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans. Nonferrous Met. Soc. China 22, 1055 (2012).CrossRefGoogle Scholar
Seighalani, K.R., Givi, M.B., Nasiri, A.M., and Bahemmat, P.: Investigations on the effects of the tool material, geometry and tilt angle on friction stir welding of pure titanium. J. Mater. Eng. Perform. 19, 955 (2010).CrossRefGoogle Scholar
Kumar, B.A. and Murugan, N.: Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite. Mater. Des. 57, 383 (2014).10.1016/j.matdes.2013.12.065CrossRefGoogle Scholar
Sathiskumar, R., Dinaharan, I., Murugan, N., and Vijay, S.J.: Influence of tool rotational speed on microstructure and sliding wear behavior of Cu/B4C surface composite synthesized by friction stir processing. Trans. Nonferrous Met. Soc. China 25, 95 (2015).CrossRefGoogle Scholar
Tutunchilar, S., Haghpanahi, M., Givi, M.B., Asadi, P., and Bahemmat, P.: Simulation of material flow in friction stir processing of a cast Al–Si alloy. Mater. Des. 40, 415 (2012).CrossRefGoogle Scholar
Guo, J., Lee, B.Y., Du, Z., Bi, G., Tan, M.J., and Wei, J.: Effect of nano-particle addition on grain structure evolution of friction stir-processed Al6061 during postweld annealing. JOM 68, 2268 (2016).CrossRefGoogle Scholar
Wang, Z., Song, M., Sun, C., and He, Y.: Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater. Sci. Eng., A 528, 1131 (2011).CrossRefGoogle Scholar
Slipenyuk, A., Kuprin, V., Milman, Y., Goncharuk, V., and Eckert, J.: Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater. 54, 157 (2006).CrossRefGoogle Scholar
Palanivel, R., Mathews, P.K., Murugan, N., and Dinaharan, I.: Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater. Des. 40, 7 (2012).10.1016/j.matdes.2012.03.027CrossRefGoogle Scholar
Dieter, G.E. and Bacon, D.: Mechanical Metallurgy (McGraw-Hill, London, 1988).Google Scholar
Rahimian, M., Ehsani, N., Parvin, N., and Baharvandi, H.R.: The effect of sintering temperature and the amount of reinforcement on the properties of Al–Al2O3 composite. Mater. Des. 30, 3333 (2009).CrossRefGoogle Scholar
Bodaghi, M. and Dehghani, K.: Friction stir welding of AA5052: The effects of SiC nano-particles addition. Int. J. Adv. Des. Manuf. Technol. 88, 2651 (2017).10.1007/s00170-016-8959-8CrossRefGoogle Scholar
Khodir, S.A. and Shibayanagi, T.: Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater. Sci. Eng., B 148, 82 (2008).10.1016/j.mseb.2007.09.024CrossRefGoogle Scholar
Barmouz, M., Asadi, P., Givi, M.B., and Taherishargh, M.: Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles size and volume fraction. Mater. Sci. Eng., A 528, 1740 (2011).CrossRefGoogle Scholar
Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M.: Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater. Sci. Eng., A 433, 50 (2006).CrossRefGoogle Scholar
Scudino, S., Liu, G., Prashanth, K.G., Bartusch, B., Surreddi, K.B., Murty, B.S., and Eckert, J.: Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 57, 2029 (2009).CrossRefGoogle Scholar
Ashby, M.F.: The theory of the critical shear stress and work hardening of dispersion-hardened crystals. In Proceeding of Second Bolton Landing Conference on Oxide Dispersion Strengthening (Gordon and Breach, Science Publishers, Inc., New York, 1968); p. 143.Google Scholar
Hansen, N.: The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall. 25, 863 (1977).CrossRefGoogle Scholar
Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951).CrossRefGoogle Scholar
Kim, H.S.: On the rule of mixtures for the hardness of particle reinforced composites. Mater. Sci. Eng., A 289, 30 (2000).CrossRefGoogle Scholar
Kim, C.S., Sohn, I., Nezafati, M., Ferguson, J.B., Schultz, B.F., Bajestani-Gohari, Z., Rohatgi, P.K., and Cho, K.: Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48, 4191 (2013).CrossRefGoogle Scholar
Redsten, A.M., Klier, E.M., Brown, A.M., and Dunand, D.C.: Mechanical properties and microstructure of cast oxide-dispersion-strengthened aluminum. Mater. Sci. Eng., A 201, 88 (1995).CrossRefGoogle Scholar
Wang, Z., Qu, R.T., Scudino, S., Sun, B.A., Prashanth, K.G., Louzguine-Luzgin, D.V., Chen, M.W., Zhang, Z.F., and Eckert, J.: Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 7, e229 (2015).CrossRefGoogle Scholar
Markó, D., Prashanth, K.G., Scudino, S., Wang, Z., Ellendt, N., Uhlenwinkel, V., and Eckert, J.: Al-based metal matrix composites reinforced with Fe49.9Co35.1Nb7.7B4.5Si2.8 glassy powder: Mechanical behavior under tensile loading. J. Alloys Compd. 615, S382 (2014).CrossRefGoogle Scholar
Vogt, R., Zhang, Z., Li, Y., Bonds, M., Browning, N.D., Lavernia, E.J., and Schoenung, J.M.: The absence of thermal expansion mismatch strengthening in nanostructured metal–matrix composites. Scr. Mater. 61, 1052 (2009).10.1016/j.scriptamat.2009.08.025CrossRefGoogle Scholar
Kumar, A., Yadav, D., Perugu, C.S., and Kailas, S.V.: Influence of particulate reinforcement on microstructure evolution and tensile properties of in-situ polymer derived MMC by friction stir processing. Mater. Des. 113, 99 (2017).Google Scholar
Supplementary material: File

Anil Kumar et al. supplementary material

Table S1

Download Anil Kumar et al. supplementary material(File)
File 12.7 KB