Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T09:25:43.865Z Has data issue: false hasContentIssue false

Epitaxial zirconia thin films from aqueous precursors

Published online by Cambridge University Press:  18 February 2016

K.T. Miller
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106
C.J. Chan
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106
M.G. Cain
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106
F.F. Lange
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106
Get access

Extract

Heteroepitaxial single crystal thin films of ZrO2 (3–40 mol % Y2O3) have been deposited on single crystal, (100) oriented ZrO2 (9.5 mol % Y2O3) substrates, using aqueous precursor solutions of zirconium acetate and yttrium nitrate. Film compositions crystallizing with the cubic structure had a lattice mismatch up to 1.59% [film composition: ZrO2 (40 mol% Y2O3)]. Precursor films were deposited by spin coating, pyrolyzed to form the oxide, and heated at high temperatures to promote epitaxial growth. Cross-sectional TEM observations of thin films annealed at 600 °C (∼0.3 Tm) show the film to be composed of two distinct regions: an epitaxial layer, 0–6 nm thick, immediately adjacent to the substrate surface, and a porous nanocrystalline region (5–10 nm grain size) comprising the bulk of the film. At higher temperatures, the epitaxial layer grows by consuming the nanocrystalline material. Porosity accumulates at the growing interface, producing a dense epitaxial layer. Lattice mismatch is accommodated by a combination of misfit dislocations and epitaxial film strain. Calculations indicate that the energy required to accommodate the lattice mismatch can be a significant fraction of the total driving energy of grain boundary elimination, suggesting that growth may be completely arrested if the misfit between film and substrate exceeds a critical value.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mantese, J.V., Micheli, A.L., Hamdi, A.H., and Vest, R.W., MRS Bulletin XIV (10), 4853 (1989).Google Scholar
2. Gallagher, D. and Ring, T. A., Chimia 43 (10), 298304 ().Google Scholar
3. Eichorst, D. J., Payne, D. A., Wilson, S. R., and Howard, K. E., Inorg. Chem. 29 (8), 14581459 (1990)CrossRefGoogle Scholar
4. Partlow, D.P. and Greggi, J., J. Mater. Res. 2, 595605 (1987).CrossRefGoogle Scholar
5. Nashimoto, K. and Cima, M.J., Mater. Lett. 10 (7,8), 348354 (1991).Google Scholar
6. Hagberg, D. S. and Payne, D. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 1924.Google Scholar
7. Kazakos, A.M., Komarneni, S., and Roy, R., Mater. Lett. 10 (1,2), 7578 (1990).CrossRefGoogle Scholar
8. McArdle, J. L., Messing, G. L., Tietz, L. A., and Carter, C. B., J. Am. Ceram. Soc. 72 (5), 864867 (1989).Google Scholar
9. Chen, Y.L., Mantese, J.V., Hamdi, A.H., and Micheli, A.L., J. Mater. Res. 4, 10651071 (1989).Google Scholar
10. Golden, S.J., Lange, F.F., Clarke, D.R., Chang, L.D., and Necker, C.T., “Metalorganic Deposition of High-Jc Thin Films in the Bi-Sr-Ca-Cu-0 System on ﹛100﹜ LaAI03 Substrates,” to be published.Google Scholar
11. Miller, K.T. and Lange, F.F., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), pp. 191199.Google Scholar
12. Jayaratna, M., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 67 (11), C240C242 (1984).CrossRefGoogle Scholar
13. Terblanche, S.P., J. Appl. Cryst. 22, 283284 (1989).CrossRefGoogle Scholar
14. Bornside, D.E., Macosko, C.W., and Scriven, L.E., J. Imag. Technol. 13 (4), 122130 (1987).Google Scholar
15. Venables, J.A. and Harland, C.J., Philos. Mag. 27, 11931200 (1973).Google Scholar
16. Dingley, D.J., Scanning Electron Microscopy/1984/II, 569575 (1984).Google Scholar
17. Scott, H.G., J. Mater. Sci. 10, 15271535 (1975).Google Scholar
18. Scott, H.G., J. Mater. Sci. 12, 311316 (1977).Google Scholar
19. Kim, D.J., J. Am. Ceram. Soc. 72 (8), 14151421 (1989).Google Scholar
20. Pascual, C. and Durán, P., J. Am. Ceram. Soc. 66 (1), 2327 (1983).CrossRefGoogle Scholar
21. Stubican, V.S., Hink, R.C., and Ray, S.P., J. Am. Ceram. Soc. 61 (1–2), 1721 (1978).Google Scholar
22. Shannon, R.D., Acta Crystallogr. A32, 751767 (1976).CrossRefGoogle Scholar
23. Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 75 (4), 946952 (1992).Google Scholar
24. Cheong, D. S., Dominguez-Rodriguez, A., and Heuer, A. H., Philos. Mag. A 60 (1), 123128 (1989).Google Scholar
25. Ingel, R. P. and Lewis, D. L., J. Am. Ceram. Soc. 71 (4), 265271 (1988).CrossRefGoogle Scholar
26. Tsaur, B.Y. and Hung, L.S., Appl. Phys. Lett. 37 (7), 648651 (1980).Google Scholar
27. Wong, C.Y., Michel, A.E., Isaac, R.D., Kastl, R.H., and Mader, S.R., J. Appl. Phys. 55 (4), 11311134 (1984).Google Scholar
28. Gong, S. F., Hentzell, H. T. G., Radnoczi, G., and Charai, A., Appl. Phys. Lett. 53 (10), 902904 (1988).CrossRefGoogle Scholar
29. Chaim, R., Heuer, A. H., and Brandon, D. G., J. Am. Ceram. Soc. 69 (3), 243248 (1986).Google Scholar
30. Matthews, J. W., in Epitaxial Growth, edited by Matthews, J. W. (Academic Press, 1975), pp. 559609.Google Scholar
31. Oishi, Y., Ando, K., and Sakka, Y., in Additives and Interfaces in Electronic Ceramics (Advances in Ceramics, vol. 7), edited by Yan, M. F. and Heuer, A. H. (The American Ceramic Society, Westerville, OH, 1983), pp. 208219.Google Scholar
32. Bauer, E.G., Dodson, B.W., Ehrlich, D.J., Feldman, L.C., Flynn, C.P., Geis, M.W., Harbison, J.P. , Matyi, R.J., Peercy, P.S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852894 (1990).Google Scholar