Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T02:19:15.070Z Has data issue: false hasContentIssue false

Energy conversion systems: Molecular architecture engineering of metal precursors and their applications to vapor phase and solution routes

Published online by Cambridge University Press:  21 September 2020

Anna Lucia Pellegrino
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania and INSTM UdR Catania, Catania95125, Italy
Giacomo Lucchini
Affiliation:
Nanomaterials Research Group, Dipartimento di Biotecnologie, Università di Verona and INSTM UdR Verona, Verona37134, Italy
Adolfo Speghini
Affiliation:
Nanomaterials Research Group, Dipartimento di Biotecnologie, Università di Verona and INSTM UdR Verona, Verona37134, Italy
Graziella Malandrino*
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania and INSTM UdR Catania, Catania95125, Italy
*
a)Address all correspondence to this author. e-mail: gmalandrino@unict.it
Get access

Abstract

A careful engineering of the central metal coordination spheres provides adducts with excellent properties for application as precursors in vapor phase and solution processes. The family of precursors under study concerns the fluorinated metal-organic β-diketonates of alkaline, alkaline-earth and rare-earth metals adducted with a polyether, with general formula M(hfa)n·L (M = Ca, Na, Y, Yb, Er, Tm; Hhfa = 1,1,1,5,5,5 hexafluoroacetylacetone, L = diglyme or tetraglyme). Mass transport properties, such as volatility and thermal stability, of these adducts have been deeply analyzed through thermogravimetric analysis and differential scanning calorimetric measurements. These properties are rationalized in relation to the metal coordination sphere in the precursors and their applications. In particular, the precursors under focus have been applied to metal organic chemical vapor deposition and a combined sol–gel/spin-coating approach. Both methods allow us to obtain selectively and reproducibly CaF2 and NaYF4 phases with several combinations of lanthanide doping ions, using a proper mixture of fluorinated precursors. A careful optimization of both synthetic strategies is the key point for the production of different lanthanide-doped binary and multicomponent fluoride films, i.e., CaF2:Yb3+,Er3+; CaF2:Yb3+,Tm3+; CaF2:Yb3+,Er3+,Tm3+ and NaYF4:Yb3+,Er3+; NaYF4:Yb3+,Tm3+, with suitable morphologies, compositions and crystalline structures. The films show very promising upconversion properties, thus pointing to their appealing applications in photovoltaic systems and white light emission devices.

Type
Invited Feature Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ma, D., Shen, Y., Su, T., Zhao, J., Ur Rahman, N., Xie, Z., Shi, F., Zheng, S., Zhang, Y., and Chi, Z.: Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Mater. Chem. Front. 10, 20582065 (2019).Google Scholar
Du, J., An, Y., Zhang, C., Zhu, C., Li, X., and Ma, D.: Photonic design and electrical evaluation of dual-functional solar cells for energy conversion and display applications. Nanoscale Res. Lett. 14, 19 (2019).Google ScholarPubMed
Kwon, H., Marques Mota, F., Chung, K., Jang, Y.J., Hyun, J.K., Lee, J., and Kim, D.H.: Enhancing solar light-driven photocatalytic activity of mesoporous carbon-TiO2 hybrid films via upconversion coupling. ACS Sustain. Chem. Eng. 6, 13101317 (2018).CrossRefGoogle Scholar
Zhang, M., Zuo, M., Wang, C., Li, Z., Cheng, Q., Huang, J., Wang, Z., and Liu, Z.: Monitoring neuroinflammation with an HOCl-activatable and blood–brain barrier permeable upconversion nanoprobe. Anal. Chem. 92, 55695576 (2020).Google ScholarPubMed
Liang, L., Teh, D.B.L., Dinh, N.D., Chen, W., Chen, Q., Wu, Y., Chowdhury, S., Yamanaka, A., Sum, T.C., and Chen, C.H.: Upconversion amplification through dielectric superlensing modulation. Nat. Commun. 10, 19 (2019).CrossRefGoogle ScholarPubMed
Lyapin, A.A., Ryabochkina, P.A., Gushchin, S.V., Zharkov, M.N., Ermakov, A.S., Kyashkin, V.M., Prytkov, S.V., and Atanova, A.V.: Characteristics of upconversion luminescence of CaF2:Er powders excited by 1.5-μm laser radiation. Opt. Spectrosc. 128, 200206 (2020).CrossRefGoogle Scholar
Zhao, Q., Zhao, J., Tao, M., Wang, C., Zeng, X., Hu, Y., Wang, S., Zeng, M., Zhou, W., Gu, H., and Li, Y.: Controllable planar electrodeposition of NaYF4: Yb3+, Er3+ thin films with efficient upconverting fluorescence. J. Lumin. 214, 116580 (2019).Google Scholar
Kaczmarek, M.: Lanthanide-sensitized luminescence and chemiluminescence in the systems containing most often used medicines: A review. J. Lumin. 222, 117174 (2020).Google Scholar
Lu, D., Mao, C., Cho, S.K., Ahn, S., and Park, W.: Experimental demonstration of plasmon enhanced energy transfer ratein NaYF4:Yb3+,Er3+ upconversion nanoparticles. Sci. Rep. 6, 18894 (2016).CrossRefGoogle Scholar
Cao, C., Qin, W., Zhang, J., Wang, Y., Wang, G., Wei, G., Zhu, P., Wang, L., and Jin, L.: Up-conversion white light of Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors. Opt. Commun. 281, 17161719 (2008).CrossRefGoogle Scholar
Hao, Y., Lv, S., Ma, Z., and Qiu, J.: Understanding differences in Er3+–Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry. RSC Adv. 8, 1216512172 (2018).CrossRefGoogle Scholar
Fischer, S., Mehlenbacher, R.D., Lay, A., Siefe, C., Alivisatos, A.P., and Dionne, J.A.: Small alkaline-earth-based core/shell nanoparticles for efficient upconversion. Nano Lett. 19, 38783885 (2019).CrossRefGoogle ScholarPubMed
Adusumalli, V.N.K.B., Koppisetti, H.V.S.R.M., Ganguli, S., Sarkar, S., and Mahalingam, V.: Tuning the energy transfer efficiency between Ce3+ and Ln3+ Ions (Ln = Tm, Sm, Tb, Dy) by controlling the crystal phase of NaYF4 nanocrystals. Chem. – Eur. J. 23, 9941000 (2017).CrossRefGoogle ScholarPubMed
Hitchman, M.L. and Jensen, K.F.: Chemical Vapor Deposition: Principles and Applications (Academic Press, London, 1993).Google Scholar
Catalano, M.R., Cucinotta, G., Schiliro, E., Mannini, M., Caneschi, A., Lo Nigro, R., Smecca, E., Condorelli, G.G., and Malandrino, G.: Metal-organic chemical vapor deposition (MOCVD) synthesis of heteroepitaxial Pr0.7Ca0.3MnO3 films: Effects of processing conditions on structural/morphological and functional properties. ChemistryOpen 4, 523532 (2015).CrossRefGoogle ScholarPubMed
Malandrino, G. and Fragalà, I.L.: Lanthanide “second-generation” precursors for MOCVD applications: Effects of the metal ionic radius and polyether length on coordination spheres and mass-transport properties. Coord. Chem. Rev. 250, 16051620 (2006).CrossRefGoogle Scholar
Malandrino, G., Benelli, C., Castelli, F., and Fragalà, I.L.: Synthesis, characterization, crystal structure and mass transport properties of lanthanum β-diketonate glyme complexes, volatile precursors for metal−organic chemical vapor deposition applications. Chem. Mater. 10, 34343444 (1998).CrossRefGoogle Scholar
Malandrino, G., Fragalà, I.L., Aime, S., Dastrù, W., Gobetto, R., and Benelli, C.: Synthesis, crystal structure and solid-state dynamics of the La(hfa)3⋅Me(OCH2CH2)4OMe (Hhfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) precursor for MOCVD applications. J. Chem. Soc. Dalton Trans. 9, 15091512 (1998).CrossRefGoogle Scholar
Catalano, M.R., Pellegrino, A.L., Rossi, P., Paoli, P., Cortelletti, P., Pedroni, M., Speghini, A., and Malandrino, G.: Upconverting Er3+, Yb3+ activated β-NaYF4 thin films: A solution route using a novel sodium β-diketonate polyether adduct. New J. Chem. 41, 47714776 (2017).CrossRefGoogle Scholar
Battiato, S., Giangregorio, M.M., Catalano, M.R., Lo Nigro, R., Losurdo, M., and Malandrino, G.: Morphology-controlled synthesis of NiO films: The role of the precursor and the effect of the substrate nature on the films’ structural/optical properties. RSC Adv. 6, 3081330823 (2016).CrossRefGoogle Scholar
Malandrino, G., Perdicaro, L.M.S., and Fragalà, I.L.: Effects of processing parameters in the MOCVD growth of nanostructured lanthanum trifluoride and oxyfluoride thin films. Chem. Vap. Deposition 12, 736741 (2006).CrossRefGoogle Scholar
Fragala, M.E., Toro, R.G., Privitera, S., and Malandrino, G.: MOCVD fabrication of magnesium fluoride films: Effects of deposition parameters on structure and morphology. Chem. Vap. Deposition 17, 8087 (2011).Google Scholar
Pellegrino, A.L., La Manna, S., Bartasyte, A., Cortelletti, P., Lucchini, G., Speghini, A., and Malandrino, G.: Upconverting tri-doped calcium fluoride-based thin films: A comparison of the MOCVD and sol–gel preparation methods. J. Mater. Chem. C 8, 38653877 (2020).CrossRefGoogle Scholar
Pellegrino, A.L., Cortelletti, P., Pedroni, M., Speghini, A., and Malandrino, G.: Nanostructured CaF2:Ln3+ (Ln3+ = Yb3+/Er3+, Yb3+/Tm3+) thin films: MOCVD fabrication and their upconversion properties. Adv. Mater. Interfaces 4, 1700245 (2017).Google Scholar
Pellegrino, A.L., Catalano, M.R., Cortelletti, P., Lucchini, G., Speghini, A., and Malandrino, G.: Novel sol–gel fabrication of Yb3+/Tm3+ co-doped β-NaYF4 thin films and investigation of their upconversion properties. Photochem. Photobiol. Sci. 17, 12391246 (2018).CrossRefGoogle ScholarPubMed
Thompson, S.C., Cole-Hamilton, D.J., Gilliland, D.D., Hitchman, M.L., and Barnes, J.C.: Stable and volatile β-diketonate complexes of copper, calcium, strontium, barium, and yttrium for use as chemical vapor deposition precursors. Adv. Mater. Opt. Electron. 1, 8197 (1992).Google Scholar
Malandrino, G., Castelli, F., and Fragalà, I.L.: A novel route to the second-generation alkaline-earth metal precursors for metal-organic chemical vapor deposition: One-step synthesis of M(hfa)2⋅tetraglyme (M = Ba, Sr, Ca and Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione). Inorg. Chim. Acta 224, 203207 (1994).CrossRefGoogle Scholar
Malandrino, G., Fragalà, I.L., Neumayer, D.A., Stern, C.L., Hinds, B.J., and Marks, T.J.: Synthesis, characterization and crystal structure of a new thermally stable and volatile precursor [bis(1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dionato)tetraglyme]barium(II) for MOCVD application. J. Mater. Chem. 4, 10611066 (1994).CrossRefGoogle Scholar
Condorelli, G.G., Malandrino, G., and Fragalà, I.L.: Engineering of molecular architectures of β-diketonate precursors toward new advanced materials. Coord. Chem. Rev. 251, 19311950 (2007).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751767 (1976).CrossRefGoogle Scholar
Cotton, F.A., Wilkinson, G., Murillo, C.A., and Bochmann, M.: Advanced Inorganic Chemistry, 6th ed. (Wiley/Interscience, NewYork, 1999).Google Scholar
Belot, J.A., Neumayer, D.A., Reedy, C.J., Studebaker, D.B., Hinds, B.J., Stern, C.L., and Marks, T.J.: Volatility by design. synthesis and characterization of polyether adducts of Bis(1,1,1,5,5,5-hexafluoro-2,4- pentanedionato)barium and their implementation as metal-organic chemical vapor deposition precursors. Chem. Mater. 9, 16381648 (1997).Google Scholar
Drake, S.R., Lyons, A., Otway, D.J., Slawin, A.M.Z., and Williams, D.J.: Lanthanide β-diketonate glyme complexes exhibiting unusual co-ordination modes. J. Chem. Soc. Dalton Trans. 15, 23792386 (1993).CrossRefGoogle Scholar
Xu, G., Wang, Z.-M., He, Z., Liu, Z., Liao, C.-S., and Yan, C.-H.: Synthesis and structural characterization of nonanuclear lanthanide complexes. Inorg. Chem. 41, 68026807 (2002).CrossRefGoogle ScholarPubMed
Malandrino, G., Licata, R., Castelli, F., Fragalà, I.L., and Benelli, C.: New thermally stable and highly volatile precursors for lanthanum MOCVD – synthesis and characterization of lanthanum β-diketonate glyme complexes. Inorg. Chem. 34, 62336234 (1995).CrossRefGoogle Scholar
Malandrino, G., Fragalà, I.L., and Scardi, P.: Heteroepitaxy of LaAlO3 (100) on SrTiO3 (100): In situ growth of LaAlO3 thin films by metal-organic chemical vapor deposition from a liquid single source. Chem. Mater. 10, 37653768 (1998).Google Scholar
Kuzmina, N.P., Tsymbarenko, D.M., Korsakov, I.E., Starikova, Z.A., Lysenko, K.A., Boytsova, O.V., Mironov, A.V., Malkerova, I.P., and Alikhanyan, A.S.: Mixed ligand complexes of AEE hexafluoroacetylacetonates with diglyme: Synthesis, crystal structure and thermal behavior. Polyhedron 27, 28112818 (2008).Google Scholar
Makarevich, A.M., Semyannikov, P.P., and Kuzmina, N.P.: Saturation vapor pressure of the mixed_ligand calcium Bis(hexafluoroacetylacetonate) complex with diglyme and water. Russian J. Inorg. Chem. 55, 19401944 (2010).CrossRefGoogle Scholar
Makarevich, A.M., Shchukin, A.S., Markelov, A.V., Samoilenkov, S.V., Semyannikov, P.P., and Kuzmina, N.P.: Low-temperature MOCVD of epitaxial CaF2 and SrF2 films. ECS Trans. 25, 525532 (2009).Google Scholar
Li, Y., Liu, T., and Du, Y.: Accelerated fabrication and upconversion luminescence of Yb3+/Er3+-codoped CaF2 nanocrystal by microwave heating. Appl. Phys. Express 5, 086501 (2012).CrossRefGoogle Scholar
Przybylska, D. and Grzyb, T.: Tailoring structure, morphology and up-conversion properties of CaF2:Yb3+,Er3+ nanoparticles by the route of synthesis. J. Mater. Sci. 55, 1416614178 (2020).CrossRefGoogle Scholar
Zhao, J., Zhu, Y.-J., Wu, J., and Chen, F.: Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3+/Er3+ nanocrystals. J. Colloid Interface Sci. 440, 3945 (2015).CrossRefGoogle ScholarPubMed
Pedroni, M., Piccinelli, F., Passuello, T., Giarola, M., Mariotto, G., Polizzi, S., Bettinelli, M., and Speghini, A.: Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: Toward efficient materials with near infrared-to-near infrared upconversion emission. Nanoscale 3, 14561460 (2011).Google ScholarPubMed
Laval, J.P., Mikou, A., Frit, B., and Roult, G.: Short-range order in heavily lanthanide(3+) doped calcium fluoride fluorites: A powder neutron diffraction study. Solid State Ionics 28–30, 13001304 (1988).CrossRefGoogle Scholar
Czaja, M., Bodyl-Gajowska, S., Lisiecki, R., Meijerink, A., and Mazurak, Z.: The luminescence properties of rare-earth ions in natural fluorite. Phys. Chem. Miner. 39, 639648 (2012).CrossRefGoogle Scholar
Falin, M.L., Gerasimov, K.I., Latypov, V.A., Leushin, A.M., Bill, H., and Lovy, D.: EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2. J. Lumin. 102, 239242 (2003).CrossRefGoogle Scholar
Kallel, T., Hassairi, M.A., Dammak, M., Lyberis, A., Gredin, P., and Mortier, M.: Spectra and energy levels of Yb3+ ions in CaF2 transparent ceramics. J. Alloys Compd. 584, 261268 (2014).Google Scholar
Balabhadra, S., Reid, M.F., Golovko, V., and Wells, J.P.R.: Absorption spectra, defect site distribution and upconversion excitation spectra of CaF2/SrF2/BaF2:Yb3+:Er3+ nanoparticles. J. Alloys Compd. 834, 155165 (2020).Google Scholar
Petit, V., Camy, P., Doualan, J.-L., Portier, X., and Moncorge, R.: Spectroscopy of Yb3+:CaF2: From isolated centers to clusters. Phys. Rev. B 78, 085131 (2008).Google Scholar
Kaczmarek, S.M., Tsuboi, T., Ito, M., Boulon, G., and Leniec, G.: Optical study of Yb3+/Yb2+ conversion in CaF2 crystals. J. Phys. Condens. Matter 17, 37713786 (2005).CrossRefGoogle Scholar
Nikiforov, A.E., Zakharov, A.Y., Ugryumov, M.Y., Kazanskii, S.A., Ryskin, A.I., and Shakurov, G.S.: Crystal fields of hexameric rare-earth clusters in fluorites. Phys. Solid State 47, 14311435 (2005).CrossRefGoogle Scholar
Lacroix, B., Genevois, C., Doualan, J.L., Brasse, G., Braud, A., Ruterana, P., Camy, P., Talbot, E., Moncorge, R., and Margerie, J.: Direct imaging of rare-earth ion clusters in Yb:CaF2. Phys. Rev. B 90, 125124 (2014).Google Scholar
Serrano, D., Braud, A., Doualan, J.L., Camy, P., and Moncorge, R.: Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters. J. Opt. Soc. Am. B 29, 18541862 (2012).CrossRefGoogle Scholar
Pedroni, M., Piccinelli, F., Passuello, T., Polizzi, S., Ueda, J., Haro-Gonzalez, P., Maestro, L.M., Jaque, D., Garcia-Sole, J., Bettinelli, M., and Speghini, A.: Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+/Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal. Cryst. Growth. Des. 13, 49064913 (2013).CrossRefGoogle Scholar
Fujihara, S., Kadota, Y., and Kimura, T.: Role of organic additives in the sol-gel synthesis of porous CaF2 anti-reflective coatings. J. Sol–Gel Sci. Technol. 24, 147154 (2002).CrossRefGoogle Scholar
Chen, B. and Wang, F.: Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 53, 358367 (2020).CrossRefGoogle ScholarPubMed
Zheng, K.Z., Loh, K.Y., Wang, Y., Chen, Q.S., Fan, J.Y., Jung, T., Nam, S.H., Suh, Y.D., and Liu, X.G.: Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today 29, 100797 (2019).Google Scholar
Kang, D., Jeon, E., Kim, S., and Lee, J.S.: Lanthanide-doped upconversion nanomaterials: Recent advances and applications. Biochip J. 14, 124135 (2020).CrossRefGoogle Scholar
Baride, A., Sigdel, G., Cross, W.M., Kellar, J.J., and May, P.S.: Near infrared-to-near infrared upconversion nanocrystals for latent fingerprint development. ACS Appl. Nano Mater. 2, 45184527 (2019).CrossRefGoogle Scholar
Kumar, D., Sharma, S.K., Verma, S., Sharma, V., and Kumar, V.: A short review on rare earth doped NaYF4 upconverted nanomaterials for solar cell applications. Mater. Today Proc. 21, 18681874 (2020).Google Scholar
Day, J., Senthilarasu, S., and Mallick, T.K.: Improving spectral modification for application in solar cells: A review. Renew Energ. 132, 186205 (2019).Google Scholar
Zhang, Q.Z., Yang, F., Xu, Z.H., Chaker, M., and Ma, D.L.: Are lanthanide-doped upconversion materials good candidates for photocatalysis? Nanoscale Horiz. 4, 579591 (2019).CrossRefGoogle Scholar
Ullah, S., Ferreira-Neto, E.P., Hazra, C., Parveen, R., Rojas-Mantilla, H.D., Calegaro, M.L., Serge-Correales, Y.E., Rodrigues, U.P., and Ribeiro, S.J.L.: Broad spectrum photocatalytic system based on BiVO4 and NaYbF4:Tm3+ upconversion particles for environmental remediation under UV-vis-NIR illumination. Appl. Catal. B-Environ. 243, 121135 (2019).CrossRefGoogle Scholar
Atabaev, T.S. and Molkenova, A.: Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives. Front. Mater. Sci. 13, 335341 (2019).CrossRefGoogle Scholar
Reig, D.S., Grauel, B., Konyushkin, V.A., Nakladov, A.N., Fedorov, P.P., Busko, D., Howard, I.A., Richards, B.S., Resch-Genger, U., Kuznetsov, S.V., Turshatov, A., and Wurth, C.: Upconversion properties of SrF2:Yb3+,Er3+ single crystals. J. Mater. Chem. C 8, 40934101 (2020).CrossRefGoogle Scholar
Kraft, M., Wurth, C., Palo, E., Soukka, T., and Resch-Genger, U.: Colour-optimized Quantum Yields of Yb, Tm Co-doped Upconversion Nanocrystals. Methods Appl. Fluoresc. 7, 24001 (2019).Google ScholarPubMed
May, P.S., Baride, A., Hossan, M.Y., and Berry, M.: Measuring the internal quantum yield of upconversion luminescence for ytterbium-sensitized upconversion phosphors using the ytterbium(III) emission as an internal standard. Nanoscale 10, 1721217226 (2018).CrossRefGoogle ScholarPubMed