Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T20:12:45.308Z Has data issue: false hasContentIssue false

The effects of melting reactions on laboratory-scale waste vitrification

Published online by Cambridge University Press:  03 March 2011

Peter A. Smith*
Affiliation:
Department of Materials Science, Pacific Northwest Laboratory, Box 999, MS P7-14, Richland, Washington 99352
John D. Vienna
Affiliation:
Department of Materials Science, Pacific Northwest Laboratory, Box 999, MS P7-14, Richland, Washington 99352
Pavel Hrma
Affiliation:
Department of Materials Science, Pacific Northwest Laboratory, Box 999, MS P7-14, Richland, Washington 99352
*
a)Author to whom all correspondence should be sent.
Get access

Abstract

At the U.S. Department of Energy's Hanford Site, processes are being developed to vitrify waste generated during nuclear materials processing. One of the wastes slated for vitrification is known as neutralized current acid waste (NCAW). The batch chemistry of simulated NCAW was varied with oxidants and reductants. Untreated, formated, nitrated, or sugar-added samples were combined with frit to produce melter feed. Offgas measurements of the formated melter feed showed that formates decomposed at temperatures too low for participation in melt redox reactions. Sugar pyrolyzed and produced CO and H2 at temperatures exceeding 665 °C. For the sugar-added samples, the glass quenched from 1200 °C produced an Fe2+ /ΣFe of 0.79. The measured iron redox ratios from the glasses made from untreated, formated, and nitrated wastes were essentially indistinguishable (0.0024 at 1000 °C and 0.032 at 1200 °C). However, the batch chemistry affected volume expansion and the reaction paths.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hrma, P., Glastech. Ber. 36K, 360369 (1990).Google Scholar
2Bickford, D. F. and Diemer, R. B., J. Non-Cryst. Solids 84, 276284 (1986).CrossRefGoogle Scholar
3Bickford, D. F., Diemer, R. B., and Iverson, D.C., J. Non-Cryst.Solids 84, 285291 (1986).CrossRefGoogle Scholar
4Schreiber, H. D. and Hockman, A. L., J. Am. Ceram. Soc. 70(8), 591594 (1987).CrossRefGoogle Scholar
5Goldman, D. S., Brite, D. W., and Richey, W.C., J. Am. Ceram. Soc. 69(5), 413417 (1986).CrossRefGoogle Scholar
6Goldman, D. S. and Brite, D. W., J. Am. Ceram. Soc. 69(5),411413 (1986).CrossRefGoogle Scholar
7Ramsey, W. G., Jantzen, C. M., and Bickford, D.F., in Ceramic Transactions, Vol. 23, Nuclear Waste Management IV, edited by Wicks, G.G., Bickford, D. F., and Bunnell, L.R. (American Ceramic Society, Westerville, OH, 1991), pp. 259265.Google Scholar
8Ramsey, W. G., Taylor, T. D., Wiemers, K. D., Jantzen, C. M., Hutson, N. D., and Bickford, D.F., in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by Varshneya, A. K., Bickford, D. F., and Bihuniak, P. P. (American Ceramic Society, Westerville, OH, 1993), pp. 535544.Google Scholar
9Jain, V., in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by Varshneya, A. K., Bickford, D. F., and Bihuniak, P. P. (American Ceramic Society, Westerville, OH, 1993), pp. 523533.Google Scholar
10Krause, Ch. and Luckscheiter, B., J. Mater. Res. 6, 25352546 (1991).CrossRefGoogle Scholar
11Gerrard, A. H. and Smith, I. H., Glastech. Ber. 56K, 1318(1983).Google Scholar
12Vienna, J. D., Smith, P. A., and Hrma, P.R., Ceram. Trans. 45, 311325 (1994).Google Scholar
13Ahn, J. S. and Hrma, P., in Advances in Ceramics (American Ceramic Society, Westerville, OH, 1986), Vol. 20.Google Scholar
14Li, H. and Tomozawa, M., unpublished.Google Scholar
15Goldman, D. S., J. Am. Ceram. Soc. 66(3), 205209 (1983).CrossRefGoogle Scholar
16Goldman, D. S., J. Non-Cryst. Solids 84, 292298 (1986).CrossRefGoogle Scholar
17Blair, H. J. and Lukacs, J.M.PNL-3552 (Pacific Northwest Laboratory, Richland, WA, 1980).Google Scholar
18Lucktong, C. and Hrma, P., J. Am. Ceram. Soc. 71, 323328 (1988).CrossRefGoogle Scholar
19Nemec, L., Glass Technol. 15(6), 153156 (1974).Google Scholar
20Schreiber, H. D., Schreiber, C. W., Riethmiller, M. W., and Sloan Dowrey, J., in Scientific Basis for Nuclear Waste Management XIII, edited by Oversby, V.M. and Brown, P. W. (Mater. Res. Soc. Symp. Proc. 176, Pittsburgh, PA, 1990), pp. 419426.Google Scholar
21Hrma, P., in Chemistry of Glasses, 2nd ed. (A. Paul Chapman and Hall, New York, 1990).Google Scholar
22Hrma, P., in Advances in the Fusion of Glass, edited by Bickford, D. F., Boulos, E. N., Olix, F., Horsfall, W. E., Lingscheit, J. N., La Course, W. C., Woolley, F. E., Harding, F., and Pye, L. D. (American Ceramic Society, Westerville, OH, 1988), pp. 10.1Google Scholar
23Kim, D.-S. and Hrma, P., Ceram. Bull. 69(6), 10391043 (1990).Google Scholar
24Jones, D. R., Jansheski, W. C., and Goldmand, D.S., Anal. Chem. 53, 923924 (1981).CrossRefGoogle Scholar
25Heide, K., Eichhorn, H. J., and Holand, W., Silikattechn. 28, 177179 (1979).Google Scholar
26Bader, E., Silikattechn. 29, 8487 (1979).Google Scholar
27Gausman, G. G., Donohoe, L. M., Kohli, J. J., Jewell, J. M., and Shelby, J. E., in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by Varshneya, A. K., Bickford, P. F., and Bihursak, P. P. (American Ceramic Society, Westerville, OH, 1993), pp. 391396.Google Scholar
28Parker, C. A., Gausman, G. G., and Shelby, J.E., in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by Varshneya, A.K., Bickford, P. F., and Bihursak, P.P. (American Ceramic Society, Westerville, OH, 1993), pp. 379390.Google Scholar
29CRC Handbook of Chemistry and Physics (CRC Press, Ann Arbor, MI, 1992).Google Scholar
30Speyer, R. F., Thermal Analysis ofMaterials (Marcel Dekker, New York, 1994).Google Scholar
31Ryan, J. L., PNL-10510 (Pacific Northwest Laboratory, Richland, WA, 1994).Google Scholar
32Abe, O., Utsunomiya, T., and Hoshino, Y., Bull. Chem. Soc. Jpn. 56(2), 428433 (1983).CrossRefGoogle Scholar
33Kramer, V. F., Glastechn. Ber. 53(7), 177188 (1980).Google Scholar
34Schreiber, H. D., Balazs, G. B., Carpenter, B. E., Kirkley, J. E., Minnix, L. M., and Jamison, P. L., Comm. Am. Ceram. Soc. 67(6), C106109 (1984).CrossRefGoogle Scholar
35Smith, H. D., Weimers, K. D., Langowski, M. H., Powell, M. R., and Larson, D. E., in Scientific Basis for Nuclear Waste Management XVII, edited by Barkatt, A. and Van Konynenburg, R. A. (Mater. Res. Soc. Symp. Proc. 333, Pittsburgh, PA, 1994), pp. 495503.Google Scholar