Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T14:35:18.568Z Has data issue: false hasContentIssue false

Effects of crystal bonding on brittle fracture

Published online by Cambridge University Press:  31 January 2011

G. S. White
Affiliation:
Ceramics Division, National Bureau of Standards, Building 223, Room A329, Gaithersburg, Maryland 20899
S. W. Freiman
Affiliation:
Ceramics Division, National Bureau of Standards, Building 223, Room A329, Gaithersburg, Maryland 20899
E. R. Fuller Jr.
Affiliation:
Ceramics Division, National Bureau of Standards, Building 223, Room A329, Gaithersburg, Maryland 20899
T. L. Baker
Affiliation:
Ceramics Division, National Bureau of Standards, Building 223, Room A329, Gaithersburg, Maryland 20899
Get access

Abstract

A series of unistructural materials was used to investigate dependence of fracture energy upon crystal bond ionicity. Fracture energy values obtained from indentation measurements were found to agree with those obtained from a simplistic sine function force law calculation. In addition, an indentation procedure to determine whether environments enhance fracture is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Orowan, E., Rep. Prog. Phys. 12, 185 (1949).CrossRefGoogle Scholar
2Gilman, J. J., J. Appl. Phys. 31, 2208 (1960).CrossRefGoogle Scholar
3Kelly, A., Strong Solids (Claredon, Oxford, England, 1973), 2nd ed., pp. 5, 8.Google Scholar
4Wiederhorn, S. M., J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
5Michalske, T. A. and Frieraan, S. W., J. Am. Ceram. Soc. 66, 284 (1983).CrossRefGoogle Scholar
6Michalske, T. A., Bunker, B. C., and Frieman, S. W., J. Am. Ceram. Soc. 69, 721 (1986).CrossRefGoogle Scholar
7Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
8Ouchterlony, F., in Rock Fracture Mechanics, edited by Rossmanith, H. P. (Spinger, New York, 1983), pp. 3168.CrossRefGoogle Scholar
9Nye, J. F., Physical Properties of Solids (Clarendon, Oxford, England, 1979), p. 145.Google Scholar
10Sih, G. C., Paris, P. C., and Irwin, G. R., Int. J. Fract. Mech. 1, 189 (1965).CrossRefGoogle Scholar
11McSkimin, H. J., Phys. Rev. 105, 116 (1957).CrossRefGoogle Scholar
12McSkimin, H. J. and Andreatch, P. Jr, J. Appl. Phys. 35, 3312 (1964).CrossRefGoogle Scholar
13Mason, W. P., Physical Acoustics and the Properties of Solids (Van Nostrand, New York, 1958).Google Scholar
14Weil, R., Am. Phys. Soc. Bull. 11, 764 (1966).Google Scholar
15Drabble, J. R., Solid State Commun. 4, 467 (1966).CrossRefGoogle Scholar
16McSkimin, H. J., J. Appl. Phys. 39, 4127 (1968).CrossRefGoogle Scholar
17Berlincourt, D., Jaffe, H., and Shiocawa, L. R., Phys. Rev. 129, 1009 (1963).CrossRefGoogle Scholar
18Gerlich, D., J. Phys. Chem. Solids 28, 2575 (1967).CrossRefGoogle Scholar
19Keyes, R. W., J. Appl. Phys. 33, 3371 (1962).CrossRefGoogle Scholar
20Vechten, J. A. Van, Phys. Rev. 187, 1007 (1969).CrossRefGoogle Scholar
21Vechten, J. A. Van, Phys. Rev. B 3, 562 (1971).CrossRefGoogle Scholar
22Wiederhorn, S. M., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1974), Vol. 2, pp. 613, 646.Google Scholar
23Frieman, S. W. and White, G. S. (unpublished work).Google Scholar
24Rice, R. W., Frieman, S. W., and Mecholsky, J. J. Jr, J. Am. Ceram. Soc. 63, 129 (1980).CrossRefGoogle Scholar
25Becher, P. F. and Frieman, S. W., J. Appl. Phys. 49, 377 (1978).CrossRefGoogle Scholar
26Martin, R. M., Phys. Rev. B 1, 4005 (1970).CrossRefGoogle Scholar
27Martin, R. M., Phys. Rev. B 6, 4546 (1972).CrossRefGoogle Scholar
28Gupta, P. K. and Jubb, N. J., J. Am. Ceram. Soc. 64, C112 (1981).CrossRefGoogle Scholar