Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T18:13:05.763Z Has data issue: false hasContentIssue false

Effect of excimer laser annealing on the structural properties of silicon germanium films

Published online by Cambridge University Press:  01 December 2004

Sherif Sedky*
Affiliation:
Physics Department, The American University in Cairo, Cairo 11511, Egypt
Jeremy Schroeder
Affiliation:
School of Materials Engineering & School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907
Timothy Sands
Affiliation:
School of Materials Engineering & School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907
Tsu-Jae King
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720
Roger T. Howe
Affiliation:
Department of Electrical Engineering and Computer Sciences, and Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720
*
a) Address all correspondence to this author.e-mail: sedky@aucegypt.edu
Get access

Abstract

We investigated the use of a pulsed excimer laser having a wavelength of 248 nm, a pulse duration of 38 ns, and an average fluence between 120 and 780 mJ/cm2 to locally tailor the physical properties of Si1−xGex (18% < x < 90%) films deposited by low-pressure chemical vapor deposition at temperatures between 400 and 450 °C. Amorphous as-deposited films showed, after laser annealing, strong {111} texture, a columnar grain microstructure, and an average resistivity of 0.7 mΩ cm. Atomic force microscopy indicated that the first few laser pulses resulted in a noticeable reduction in surface roughness, proportional to the pulse energy. However, a large number of successive pulses dramatically increased the surface roughness. The maximum thermal penetration depth of the laser pulse is demonstrated to depend on the fluence and the film structure being either polycrystalline or amorphous. Finally, a comparison between excimer laser annealing and metal-induced crystallization and rapid thermal annealing is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Franke, A., Heck, J., King, T.J. and Howe, R.T.Polycrystalline silicon germanium films for integrated microsystems. J. Microelectromech. Syst. 12, 160 (2003)Google Scholar
2Robertson, A.E., Hultman, L.G., Hentzell, H.T.G., Hornstrom, S.E. and Shaofang, G.: Metal induced crystallization of amorphous silicon. J. Vac. Sci. Technol. A 5, 1447 (1987).CrossRefGoogle Scholar
3Yoon, S.Y., Kim, K.H. and Kim, C.O.: Low temperature metal induced crystallization of amorphous silicon using a Ni solution. J. Appl. Phys. 82, 5865 (1997).CrossRefGoogle Scholar
4Wong, M., Jin, Z., Bhat, G., Wong, P. and Kwok, H.: Characterization of the MIC/MILC interface and its effect on the performance of MILC thin-film transistors. IEEE Trans. Electron Devices 47, 1061 (2000).CrossRefGoogle Scholar
5Bhattacharyya, A., Streetman, B. and Hess, K.: Theoritical and experimental investigation of the dynamics of pulsed laser annealing of amorphous silicon. J. Appl. Phys. 52, 3611 (1981).CrossRefGoogle Scholar
6Kohno, A., Sameshima, T., Sano, N., Sekiya, M. and Hara, M.: High performance poly-Si TFTs fabricated using pulsed laser annealing and remote plasma CVD with low temperature processing. IEEE Trans. Electron Devices. 42, 251 (1995).Google Scholar
7Andra, G., Bergmann, J., Falk, F. and Ose, E.: In situ diagnostics for preparation of laser crystallized silicon films on glass for solar cells. Thin Solid Films 337, 98 (1999).CrossRefGoogle Scholar
8Yoon, S.Y., Young, N., Van der Zaag, P. and McCulloch, D.: High performance poly-Si TFTs made by Ni-mediated crystallization through low-shot laser annealing. IEEE Electron Device Lett. 24, 22 (2003).Google Scholar
9Murley, D., Young, N., Trainor, M. and McCulloch, D.: An investigation of laser annealed and metal induced crystallized polycrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 48, 1145 (2001).CrossRefGoogle Scholar
10Sedky, S., Witvrouw, A., Caymax, M., Saerens, A. and Van Houtte, P.: Characterization of RPCVD polycrystalline silicon germanium deposited at temperatures ⩽ 550 °C. J. Mater. Res. 17, 1580 (2002).CrossRefGoogle Scholar
11Sedky, S., Witvrouw, A., Saerens, A., Van Houtte, P., Poortmans, J. and Baert, K.: Effect of in-situ boron doping on properties of silicon germanium films deposited by CVD at 400 °C. J. Mater. Res. 16, 2607 (2001).CrossRefGoogle Scholar
12Watanabe, H., Miki, H., Sugai, S., Kawasaki, K. and Kioka, T.: Crystallization process of polycrystalline silicon by KrF excimer laser annealing. Jpn. J. Appl. Phys. 33, 4491 (1994).CrossRefGoogle Scholar
13Fogarassy, E., Stuck, R., Toulemonde, M., Bruyers, J. and Siffert, P.: Pulsed laser annealing of rf sputtered amorphous Si-H films doped with arsenic. J. Appl. Phys. 53, 3261 (1982).Google Scholar
14Donnelly, D., Covington, B., Grun, J., Fischer, R., Peckerar, M., Felix, C., Djordjevic, B., Mignogna, R., Meyer, J., Ting, A. and Manka, C.Athermal annealing of ion-implanted silicon, in 9th Int. Conf. on Advanced Thermal Processing of Semiconductors—RTR 2001, pp. 133144Google Scholar
15Prussin, S. and Van der Ohe, W.: Laser annealing of low-fluence ion-implanted silicon. J. Appl. Phys. 51, 3853 (1980).CrossRefGoogle Scholar
16Kim, D. and Kwong, D.: Pulsed laser annealing of single-crystal and ion-implanted semiconductors, IEEE J. Quantum Electron. 18, 224 (1982).Google Scholar
17Chiussi, S., Gonzalez, P., Leon, B., Larciprete, R., Willmott, P., Martelli, S., Cesile, C. and Borsella, E.: Laser-induced integrated processing for heteroepitaxial SixGe(1-x) alloys. Appl. Surf. Sci. 102, 42 (1996).CrossRefGoogle Scholar
18Chiussi, S., Serra, C., Serra, J., González, P., León, B., Urban, S., Andrä, G., Bergmann, J., Falk, F., Fabbri, F., Fornarini, L., Martelli, S. and Rinaldi, F.: Laser crystallization of poly-SiGe for microbolometers. Appl. Surf. Sci. 186, 166 (2002).Google Scholar
19Chang, T.K., Chu, F.T., Lin, C.W., Tseng, C.H. and Cheng, H.C.: A novel germanium doping method for fabrication of high-performance p-channel poly-Si1-xGex TFT by excimer laser crystallization. IEEE Electron. Device Lett. 24, 233 (2003).CrossRefGoogle Scholar
20Yu, G., Krishna, K.M., Shao, C., Umeno, M., Soga, T., Watanabe, J. and Jimbo, T.: Characterization of excimer laser annealed polycrystalline Si1-xGex alloy thin films by x-ray diffraction and spectroscopic ellipsometry. J. Appl. Phys. 83, 174 (1998).CrossRefGoogle Scholar
21Sedky, S., Howe, R. and King, T.J.: Pulsed laser annealing, a low thermal budget technique for eliminating stress gradient in poly-SiGe MEMS structures. J. Microelectromech. Syst. 13, 4 (2004).CrossRefGoogle Scholar
22Anderson, G.B., Boyce, J.B., Fork, D.K., Mei, P., Ready, S., and Chen, S.: Critical laser fluence observed in (111) texture, grain size and mobility of laser crystallized amorphous silicon, in Amorphous Silicon Technology, 1993, edited by Schiff, E.A., Thompson, M.J., Madan, A., Tanaka, K., and LeComber, P.G. (Mater. Res. Soc. Symp. Proc. 297 Pittsburgh, PA, 1993), pp. 533538.Google Scholar
23Toet, D., Smith, P. and Sigmon, T.: Laser crystallization and structural characterization of hydrogenated amorphous silicon thin films. J. Appl. Phys. 85, 7914 (1999).CrossRefGoogle Scholar
24Thompson, M., Galvin, G. and Mayer, J.Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 2360 (1984)CrossRefGoogle Scholar
25Robertson, A., Hultman, L., Hentzell, H., Hornstorn, S. and Shaofang, G.: Metal induced crystallization of amorphous silicon. J. Vac. Sci. Technol. A 5, 1447 (1987).Google Scholar
26Yoon, S. and Young, J.: Low temperature solid phase crystallization of amorphous silicon at 380 °C. J. Appl. Phys. 84, 6463 (1998).CrossRefGoogle Scholar