Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T23:11:51.627Z Has data issue: false hasContentIssue false

Effect of Cr doping on the electrical conductivity and Seebeck coefficient in the superconductors obtained from the Bi–Pb–Sr–Ca–Cu–Cr–O-type glassy precursors by annealing

Published online by Cambridge University Press:  31 January 2011

H. K. Barik
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700032, India
S. K. Ghorai
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700032, India
S. Bhattacharya
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700032, India
D. Kilian
Affiliation:
Institute of Physical Chemistry, Technical University Darmstadt, D-64287 Darmstadt, Germany
B. K. Chaudhuri
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700032, India
Get access

Abstract

Homogenous (Bi3Pb)Sr3Ca3 (Cu4−nCrn)Ox (n 4 0 to 0.20) type glassy precursors become high-Tc superconductors by annealing at 840 °C. The suppression of Tc with increase of Cr concentration supports the pair-breaking mechanism. The feeble semiconducting behavior shown by the doped samples above their respective Tc values followed Mott's variable range hopping conduction mechanism. Like Ti- and Fe-doped samples, studied earlier, the thermoelectric power (TEP) of the present Cr-containing sample showed small positive peak above Tc, which was considered to be associated with the phonon-drag effect. The linear part of the temperature-dependent TEP (above Tc) well fitted the two-band model.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Varma, K.B.R, Rao, K.J., and Rao, C.N.R, Appl. Phys. Lett. 54, 69 (1989).CrossRefGoogle Scholar
2.Baker, R.C., Hurng, W.H., and Steinfink, H., Appl. Phys. Lett. 54, 371 (1989).CrossRefGoogle Scholar
3.Zhang, H. and Mackenzie, J.D., Phys. Rev. B 38, 7166 (1988).CrossRefGoogle Scholar
4.Mollah, S., Som, K.K., Bose, K., and Chaudhuri, B.K., J. Appl. Phys. 74, 931 (1993).CrossRefGoogle Scholar
5.Chatterjee, S., Banerjee, S., Mollah, S., and Chaudhuri, B.K., J. Chem. Phys. 108, 2954 (1998).CrossRefGoogle Scholar
6.Chatterjee, S., Banerjee, S., Mollah, S., and Chaudhuri, B.K., Phys. Rev. B 53, 5942 (1996).CrossRefGoogle Scholar
7.Komatsu, T., Nakakura, M., Sato, R., Khaled, J., and Matusita, K., J. Non-Cryst. Solids 195, 102 (1996).CrossRefGoogle Scholar
8.Abe, Y., Hosono, H., Hosoe, M., Iwase, J., and Kubo, N., Appl. Phys. Lett. 53, 1341 (1988).CrossRefGoogle Scholar
9.Mollah, S., Chakraborty, A.K., Chakraborty, S., Som, K.K., and Chaudhuri, B.K., J. Non.-Cryst. Solids 167, 192 (1994).CrossRefGoogle Scholar
10.Onishi, M., Kyoto, M., and Watanabe, M., Jpn. J. Appl. Phys. 30, L1545 (1991).CrossRefGoogle Scholar
11.Massalker, Y., Sembira, A.N., and Baram, J., J. Mater. Res. 8, 1 (1993).CrossRefGoogle Scholar
12.Aruchamy, A., Kim, S.J., Birnie, D.P. III, and Uhlmann, D.R., J. Non.-Cryst. Solids 160, 60 (1993).CrossRefGoogle Scholar
13.Minami, T., Akmatsu, Y., Tatsumisago, M., Tohge, N., and Kowada, Y., Jpn. J. Appl. Phys. 27, 777 (1988).CrossRefGoogle Scholar
14.Abrikosov, A.A. and Gor'kov, L.P., Sov. Phys. JETP 12, 1243 (1961).Google Scholar
15.Chatterjee, S., Chaudhuri, B.K., and Komatsu, T., Solid State Commun. 104, 67 (1997).CrossRefGoogle Scholar
16.Chatterjee, S., Bhattacharya, S., Chaudhuri, B.K., Froumin, N., Polak, M., and Baram, J., Phys. Rev. B 54, 10143 (1996).CrossRefGoogle Scholar
17.Chatterjee, S., Pal, P.K., Bhattacharya, S., and Chaudhuri, B.K., Phys. Rev. (in press).Google Scholar
18.Miceli, P.F., Tarascon, J.M., Greene, L.H., Barboux, P., Rotella, F.J., and Jorgensen, J.D., Phys. Rev. B 37, 5932 (1988).CrossRefGoogle Scholar
19.Xiao, G., Cieplak, M.Z., Gavrin, A., Streitz, F.H., Bakhshai, A., and Chien, C.L., Phys. Rev. B 60, 1446 (1988).Google Scholar
20.Jones, T.E., Thibado, P.M., McGinnis, W.C., Boss, R.D., Schindler, J.W., and Oseroff, S., Physica C 162–164, 25 (1989).CrossRefGoogle Scholar
21.Remschnig, K., Tarascon, J.M., Miceli, P.F., Hull, G.W., and McKinnon, W.R., Phys. Rev. B 43, 5481 (1991).CrossRefGoogle Scholar
22.Prabhu, P.S. and Varadaraju, U.V., Phys. Rev. B 53, 14637 (1996).CrossRefGoogle Scholar
23.Goodwin, J., Radousky, H.B., and Shelton, R.N., Phys. Rev. B 56, 5144 (1997).CrossRefGoogle Scholar
24.Nkum, R.K., Punnett, A., and Datars, W.R., Physica C 162–164, 25 (1989).Google Scholar
25.Kuw, Y.K., Schneider, C.W., Skove, M.J., Neitt, M.V., Tessema, G.X., and McGee, J.J., Phys. Rev. B 56, 6201 (1997).Google Scholar
26.Chung, H. and Mackenzie, J.D., J. Non.-Cryst. Solids 42, 357 (1980).CrossRefGoogle Scholar
27.Sakata, H., Sega, K., and Chaudhuri, B.K., Phys. Rev. B 60, 3230 (1999).CrossRefGoogle Scholar
28.Ambegaokar, V., Halperin, B.I., and Langer, J.S., Phys. Rev. B 4, 2812 (1971).CrossRefGoogle Scholar
29.Kastner, M.A., Birgeneau, R.J., Chen, C.Y., Chinag, Y.M., Gabbe, D.R., Jenssen, H.P., Junk, T., Peters, C.J., Picone, P.J., Thio, T., Thurston, T.R., and Tuller, H.L., Phys. Rev. B 37, 111 (1988).CrossRefGoogle Scholar
30.Fisher, B., Koren, G., Genossar, J., Patlagan, L., and Gartstein, E.E., Physica C 176, 75 (1991).CrossRefGoogle Scholar
31.Fournier, P., Gagnon, R., and Aubin, M., Physica C 177, 15 (1991);CrossRefGoogle Scholar
Jayaram, B., Lanchester, P.C., and Weller, M.T., Phys. Rev. B 43, 5444 (1991).CrossRefGoogle Scholar
32.Xu, Y. and Guan, W., Physica C 206, 59 (1993); Physica C 212, 119 (1993).CrossRefGoogle Scholar
33.Jiang, Wu, Peng, P.L., Hamilton, J.J., and Greene, R.L., Phys. Rev. B 49, 690 (1994).CrossRefGoogle Scholar
34.Sugita, T., Yabuchi, M., Murase, K., Okabayashi, H., Gase, K., and Namba, S., Solid State Commun. 67, 9012 (1992).Google Scholar
35.Markert, J.T., Dalichaouch, Y., and Maple, M.B., in Physical Properties of High Temperature Superconductors, edited by Ginsberg, D.M. (World Scientific, Singapore, 1989), Vol. 1, p. 266.Google Scholar
36.Coffey, L. and Cox, D.L., Phys. Rev. B 37, 3389 (1988).CrossRefGoogle Scholar
37.Chaudhuri, B.K., Barik, H.K., and Bhattacharya, S. (unpublished).Google Scholar
38.Forrow, L., Lukatela, J., and Keszeie, B., Solid State Commun. 73, 501 (1990).CrossRefGoogle Scholar
39.Dee, R.H. and Guenault, A.M., Solid State Commun. 25, 353 (1978).CrossRefGoogle Scholar
40.Macdonald, D.K.C, Thermoelectricity (Wiley, New York, 1962).Google Scholar
41.Goldschmidt, D., Direktovitch, Y., Knizhnik, A., and Eckstein, Y., Phys. Rev. B 54, 13348 (1996).CrossRefGoogle Scholar
42.Isawa, K., Yaegashi, Y., Komatsu, M., Nagano, M., Sudo, S., Karppinen, M., and Yamauchi, H., Phys. Rev. B 56, 3457 (1997).CrossRefGoogle Scholar