Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T20:44:52.870Z Has data issue: false hasContentIssue false

Different crystallization mechanisms in polypropylene–nanoclay nanocomposite with different weight percentage of nanoclay additives

Published online by Cambridge University Press:  20 March 2012

Raghavendra R. Hegde
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
Joseph E. Spruiell
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
Gajanan S. Bhat*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
*
a)Address all correspondence to this author. e-mail: gbhat@utk.edu
Get access

Abstract

Polypropylene–clay (Cloisite Na+) composites with clay contents in weight percentage (wt%) ranging from 1 to 15% were characterized for crystallization mechanism and kinetics. Combination of differential scanning calorimetry, transmission electron microscopy (TEM), and polarized light microscopy was used to investigate the crystallization behavior. Different crystallization mechanisms were observed in the matrix with 1–5 wt% nanoclay compared to the matrix with 10 and 15 wt% of nanoclay additive. TEM micrographs revealed intercalated and flocculated morphology for all the concentrates. At lower wt%, well-dispersed clay platelets acted as antinucleating agent and reduced polymer chain mobility. At high wt%, nucleation rate overcomes the slow diffusion rate. In the case of samples with higher wt% of nanoclay additives, segregation and precipitation of clay was observed in the interspherulite region. On the basis of crystallization kinetics and morphology results, a schematic model of the nanocomposite formation is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Picard, E., Vermogen, A., Gérard, J.-F., and Espuche, E.: Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state: consequences on modeling. J. Membr. Sci. 292(1–2), 133, 2007.CrossRefGoogle Scholar
2.Bhat, G.S., Hegde, R.R., Kamath, M.G., and Deshpande, B.: Nanoclay reinforced fibers and nonwovens. J. Eng. Fibers Fabr. 3(3), 22, 2008.Google Scholar
3.Hegde, R.R. and Bhat, G.S.: Nanoparticle effects on structure and properties of polypropylene meltblown webs. J. Appl. Polym. Sci. 115(2), 1062 (2009).CrossRefGoogle Scholar
4.Hegde, R.R. and Bhat, G.S.: Nanoparticle effects on the morphology and mechanical properties of polypropylene spunbond webs. J. Appl. Polym. Sci. 118(6), 3141 (2010).CrossRefGoogle Scholar
5.Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Karauchi, T., and Kamigaito, O.:. Mechanical properties of nylon-6-clay hybrid. J. Mater. Res. 8(5), 1185 (1993).CrossRefGoogle Scholar
6.Vaia, R.A., Price, G., Ruth, P.N., Hieu, N.T., and Joseph, L.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15(1–2), 67 (1999).CrossRefGoogle Scholar
7.Loo, L.S. and Gleason, K.K.: Investigation of polymer and nanoclay orientation distribution in nylon 6/montmorillonite nanocomposite. Polymer 45(17), 5933 (2004).CrossRefGoogle Scholar
8.Mazhani, K.: Studies of the Gamma form of isotactic polypropylene at atmospheric and elevated pressures. Ph.D. Dissertation, The University of Tennessee, 1996.Google Scholar
9.Karger-Kocsis, J.: Polypropylene: Structure Blends and Composites: Structure and Morphology Copolymers and Blends Composites, 1st ed. (Chapman & Hall, London, UK, 1995), pp. 3339.Google Scholar
10.Brückner, S., Meille, S.V., Petraccone, V., and Pirozzi, B.: Polymorphism in isotactic polypropylene. Prog. Polym. Sci. 16(2–3), 361 (1991).CrossRefGoogle Scholar
11.Zheng, W., Lu, X., Toh, C.L., Zheng, T.H., and He, C.: Effects of clay on polymorphism of polypropylene in polypropylene/clay nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 42(10), 1810 (2004).CrossRefGoogle Scholar
12.Karger-Kocsis, J.: Polypropylene: Structure Blends and Composites: Structure and Morphology Copolymers and Blends Composites, 1st ed. (Chapman & Hall, London, UK, 1995), p. 43.Google Scholar
13.Yuan, Q., Deshmane, C., Pesacreta, T.C., and Misra, R.D.K.: Nanoparticle effects on spherulitic structure and phase formation in polypropylene crystallized at moderately elevated pressures: The influence on fracture resistance. Mater. Sci. Eng., A 480(1–2), 181 (2008).CrossRefGoogle Scholar
14.Douglas, L.H., Karl, W.K., and Donald, R.P.: Processing and properties of polymer modified by clays. MRS Bull. 32, 323 (2007).Google Scholar
15.Leuteritz, A., Pospiech, A.D., Kretzschmar, B., Willeke, M., Jehnichen, D., Jentzsch, U., Grundke, K., and Janke, A.: Polypropylene-clay nanocomposites: Comparison of different layered silicates. Macromol. Symp. 221, 53 (2005).CrossRefGoogle Scholar
16.Product bulletin/Cloisite®, Southern clay products, inc. Retrieved fromhttp://www.nanoclay.com/, December 13, 2007.Google Scholar
17.Brindly, S.W., Brown, G. (eds.): Crystal Structure of Clay Minerals and Their X-ray Diffraction (London, Mineralogical Society, 1980).Google Scholar
18.Aranda, P. and Ruiz-Hitzky, E.: Poly (ethylene oxide)-silicate interaction materials. Chem. Mater. 4, 1395 (1992).CrossRefGoogle Scholar
19.Greenland, D.J.: Absorption of poly (vinyl alcohols) by montmorillonite. J. Colloid Sci. 18, 647 (1963).CrossRefGoogle Scholar
20.Hasegawa, N.O., Kato, H., Tsukigase, M., and Usuki, A.: Polyolefin-clay hybrids based on modified polyolefins and organophilic clay. Macromol. Mater. Eng. 76, 280 (2000).Google Scholar
21.Joshi, M. and Viswanathan, V.: High performance filaments from compatibilised PP/clay nanocomposites. J. Appl. Polym. Sci. 102(3), 2164 (2006).CrossRefGoogle Scholar
22.Rogers, K., Takacs, E., and Thompson, M.R.: Contact angle measurement of select compatibilizers for polymer-silicate layer nanocomposites. Polym. Test. 24(4), 423 (2005).CrossRefGoogle Scholar
23.Seo, Y., Kim, J., Kim, K.U., and Kim, Y.C.: Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer 41(7), 2639 (2000).CrossRefGoogle Scholar
24.Kim, B., Lee, S.H., Lee, D., Ha, B., Park, J., and Char, K.: Crystallization kinetics of maleated polypropylene/clay hybrids. Ind. Eng. Chem. Res. 43(19), 6082 (2004).CrossRefGoogle Scholar
25.Maiti, P., Nam, P.H., Okamoto, M., Hasegawa, N., and Usuki, A.: Influence of crystallization on intercalation, morphology and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35(6), 2042 (2002).CrossRefGoogle Scholar
26.METTLER TOLEDO DSC 822e STARe Software user manual DSC evaluations.Google Scholar
27.Weng, W., Chen, G., and Wu, D.: Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer 44, 8119 (2003).CrossRefGoogle Scholar
28.Mucha, M. and Królikowski, Z.: Application of dsc to study crystallization kinetics of polypropylene containing fillers. J. Therm. Anal. Calorim. 74, 549 2003.CrossRefGoogle Scholar
29.Avrami, M.J.J. Chem. Phys. 8, 212, 1940.CrossRefGoogle Scholar
30.Sharples, A.: Kinetics of phase change II: Transformation-Time relations for random distribution of nuclei. Introduction to Polymer Crystallization (St Martin’s Press, New York, 1966).Google Scholar
31.Ray, S.S. and Okamoto, M.: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539 (2003).Google Scholar
32.Shen, L., Tjiu, W.C., and Liu, T.: Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites. Polymer 46(25), 11969 (2005).CrossRefGoogle Scholar
33.Wang, K., Zhao, P., Yang, H., Liang, S., Zhang, Q., Du, R., Fu, Q., Yu, Z., and Chen, E.: Unique clay orientation in the injection-molded bar of isotactic polypropylene/clay nanocomposite. Polymer 47(20), 7103 (2006).CrossRefGoogle Scholar
34.Mubarak, Y., Martin, P.J., and Harkin-Jones, E.: Effect of nucleating agent and pigments on crystallisation, morphology and mechanical properties of polypropylene. Plast. Rubber Compos. 29, 307 (2000).CrossRefGoogle Scholar
35.Mazhani, K.: Isothermal crystallization and melting of deuterated isotactic polypropylene. Master’s thesis, The University of Tennessee, 1995.Google Scholar
36.Wunderlich, B.: Macromolecular Physics, Vol. 13 (Academic press, New York, 1973).Google Scholar
37.Mullin, J.W.: Crystallization, 4th ed. (Butterworth-Heinemann, UK, 2001).Google Scholar
Supplementary material: File

Hegde et al. supplementary material

Figures

Download Hegde et al. supplementary material(File)
File 1.1 MB