Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T13:20:20.528Z Has data issue: false hasContentIssue false

CuSiGe-catalyzed growth of Si1−xGexOynanowire assemblies with various morphologies

Published online by Cambridge University Press:  31 January 2011

Chih-Yuan Ko
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Wen-Yuan Hsieh
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Ting-Jui Hsu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Wen-Tai Lin*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
*
a)Address all correspondence to this author. e-mail: wtlin@mail.ncku.edu.tw
Get access

Abstract

Si1−xGexOynanowire (SiGeONW) assemblies with cord-, chain-, and tubelike morphologies were grown on a Si substrate via the carbothermal reduction of GeO2/CuO powders at 1100 °C in Ar. The growth of various SiGeONWs assemblies follows the vapor-liquid-solid process. The CuSiGe droplets formed during the growth of SiGeONWs simultaneously play the roles of catalyst and reactant. The morphology of SiGeONWs assemblies is not temperature controlled but dependent on the Cu concentration and the size of CuSiGe catalysts. This phenomenon is unlike the Ge- and Ga-catalyzed growth of SiOxnanowire assemblies. In addition, the processing parameters and the mechanisms for the growth of SiGeONWs assemblies with various morphologies are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C.Feng, S.Q.: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 1998Google Scholar
2Zacharias, M.Fauchet, P.M.: Blue luminescence in films containing Ge and GeO2nanocrystals: The role of defects. Appl. Phys. Lett. 71, 380 1997Google Scholar
3Zhang, J.Y., Bao, X.M., Ye, Y.H.Tan, X.L.: Blue and red photoluminescence from Ge+implanted SiO2films and its multiple mechanism. Appl. Phys. Lett. 73, 1790 1998Google Scholar
4He, J.H., Wu, W.W., Lee, S.W., Chen, L.J., Chueh, Y.L.Chou, L.J.: Synthesis of blue-light-emitting Si1−xGexoxide nanowires. Appl. Phys. Lett. 86, 263109 2005CrossRefGoogle Scholar
5Pan, Z.W., Dai, Z.R., Ma, C.Wang, Z.L.: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817 2002Google Scholar
6Pan, Z.W., Dai, S., Beach, D.B.Lowndes, D.H.: Liquid gallium ball/crystalline silicon polyhedrons/aligned silicon oxide nanowires sandwich structure: An interesting nanowire growth route. Appl. Phys. Lett. 83, 3159 2003Google Scholar
7Sun, S., Meng, G., Zhang, M., Hao, Y., Zhang, X.Zhang, L.: Microscopy study of the growth process and structural features of closely packed silica nanowires. J. Phys. Chem. B 107, 13029 2003Google Scholar
8Ma, R.Bando, Y.: In–Ni microballs catalyzed growth of dense and highly aligned silica nanowires. Chem. Phys. Lett. 377, 177 2003Google Scholar
9Dang, H.Y., Wang, J.Fang, S.S.: The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology 14, 738 2003CrossRefGoogle Scholar
10Li, Y., Bando, Y.Golberg, D.: Indium-assisted growth of aligned ultra-long silica nanotubes. Adv. Mater. 16, 37 2004CrossRefGoogle Scholar
11Elechiguerra, J.L., Manriquez, J.A.Yacaman, M.J.: Growth of amorphous SiO2nanowires on Si using a Pd/Au thin film as a catalyst. Appl. Phys. A 79, 461 2004CrossRefGoogle Scholar
12Hu, J., Bando, Y., Zhan, J., Yuan, X., Sekiguchi, T.Golberg, D.: Self-assembly of SiO2nanowires and Si microwires into hierarchical heterostructures on a large scale. Adv. Mater. 17, 971 2005Google Scholar
13An, X., Meng, G., Wei, Q., Kong, M.Zhang, L.: SiO2nanowires growing on hexagonally arranged circular patterns surrounded by TiO2films. J. Phys. Chem. B 110, 222 2006Google Scholar
14Hu, J., Jiang, Y., Meng, X., Lee, C.S.Lee, S.T.: Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes. Small 4, 429 2005CrossRefGoogle Scholar
15Liu, Z.Q., Xie, S.S., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, C.Y., Liu, W., Li, Y.B., Zou, X.P.Wang, G.: Synthesis of α–SiO2nanowires using Au nanoparticle catalysts on a silicon substrate. J. Mater. Res. 16, 683 2001Google Scholar
16Pan, Z., Dai, S., Beach, D.B.Lowndes, D.H.: Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten gallium. Nano Lett. 3, 1279 2003CrossRefGoogle Scholar
17Lin, Y.C.Lin, W.T.: Growth of SiO2nanowires without a catalyst via carbothermal reduction of CuO powders. Nanotechnology 16, 1648 2005CrossRefGoogle Scholar
18Liu, L., Zhang, T.J., Cui, K.Dong, Y.D.: Reduction of copper oxide with graphite by mechanical alloying. J. Mater. Res. 14, 4062 1999Google Scholar
19Saulig-Wenger, K., Cornu, D., Chassagneux, F., Epicier, T.Miele, P.: Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom. J. Mater. Chem. 13, 3058 2003CrossRefGoogle Scholar
20Ko, C.Y.Lin, W.T.: SiO2- and CuO-enhanced growth of Ge–Si1−xGexOyand GeO2–Si1−xGexOycore-shell nanowires on a Si substrate via carbothermal reduction. Nanotechnology 17, 4464 2006CrossRefGoogle Scholar
21Givargizov, E.I.: Periodic instability in whisker growth. J. Cryst. Growth 20, 217 1973Google Scholar