Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T04:47:43.418Z Has data issue: false hasContentIssue false

Crystallization behavior of polymer-derived Si–B–C–N ceramics in a high-pressure nitrogen environment

Published online by Cambridge University Press:  31 January 2011

Y. Cai
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
A. Zimmermann
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
S. Prinz
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Get access

Abstract

This communication presents the effects of nitrogen pressure on the crystallization behavior of Si3.0B1.1C5.3N3.0 ceramics annealed at 1800 °C for 3 h. Transmission electron microscopy observation reveals that increasing nitrogen pressure results in the retardation of the crystallization process. Besides SiC and Si3N4 nanocrystals, individual large crystallites were also detected. These crystals were composed only of Si and N, and they possessed hexagonal structure with lattice parameters a = 0.737 nm and c = 0.536 nm. Crystallites of this novel phase were more frequently found with increased nitrogen pressure.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weinmann, M., Haug, R., Bill, J., Aldinger, F., Schuhmacher, J., and Mu¨ller, K., J. Organomet Chem. 541, 345 (1997).CrossRefGoogle Scholar
2.Aldinger, F., Weinmann, M., and Bill, J., Pure Appl. Chem. 70, 439 (1998).CrossRefGoogle Scholar
3.Weinmann, M., Kamphowe, T.W., Schuhmacher, J., Mu¨ller, K., and Aldinger, F., Chem. Mater. 12, 2112 (2000).CrossRefGoogle Scholar
4.Riedel, R., Kienzle, A., Dreßler, W., Ruwisch, L., Bill, J., and Aldinger, F., Nature (London) 382, 796 (1996).CrossRefGoogle Scholar
5.Weinmann, M., Schuhmacher, J., Kummer, H., Prinz, S., Peng, J.Q., Seifert, H.J., Christ, M., Mu¨ller, K., Bill, J., and Aldinger, F., Chem. Mater. 12, 623 (2000).CrossRefGoogle Scholar
6.Cai, Y., Zimmermann, A., Prinz, S., Zern, A., Phillipp, F., and Aldinger, F., Scripta Mater. 45, 1301 (2001).CrossRefGoogle Scholar
7.Mu¨ller, M., Gerstel, P., Weinmann, M., Bill, J., and Aldinger, F., J. Eur. Ceram. Soc. 20, 2655 (2000).CrossRefGoogle Scholar
8.Butchereit, E., Nickel, K.G., and Mu¨ller, A., J. Am. Ceram. Soc. 84, 2184 (2001).CrossRefGoogle Scholar
9.Baufeld, B., Gu, H., Bill, J., Wakai, F., and Aldinger, F., J. Eur. Ceram. Soc. 19, 2797 (1999).CrossRefGoogle Scholar
10.Christ, M., Thurn, G., Weinmann, M., Bill, J., and Aldinger, F., J. Am. Ceram. Soc. 83, 3025 (2000).CrossRefGoogle Scholar
11.Christ, M., Zimmermann, A., and Aldinger, F., J. Mater. Res. 16, 1994 (2001).CrossRefGoogle Scholar
12.Christ, M., Zimmermann, A., Zern, A., Weinmann, M., and Aldinger, F., J. Mater. Sci. 36, 5767 (2001).CrossRefGoogle Scholar
13.Zimmermann, A., Bauer, A., Christ, M., Cai, Y., and Aldinger, F., Acta Mater. 50, 1187 (2002).CrossRefGoogle Scholar