Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-18T12:31:10.641Z Has data issue: false hasContentIssue false

Crystal growth of Bi2Sr2Ca2Cu3O10+x and (Bi,Pb)2Sr2Ca2Cu3O10+x by the KCl flux method

Published online by Cambridge University Press:  31 January 2011

Sergey Lee
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Ayako Yamamoto
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Setsuko Tajima
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Get access

Abstract

Bi2Sr2Ca2Cu3O10+x and (Bi,Pb)2Sr2Ca2Cu3O10+x single crystals with a sharp superconducting transition at Tc = 109 K were grown using a modified KCl flux technique. The crystals show platelike morphology with typical dimensions of 0.5 × 0.5 × 0.002 mm3 and 0.25 × 0.25 × 0.001 mm3 for Pb-free and Pb-doped compositions, respectively. The formation of Bi-2212 intergrowth in the crystals is suppressed by utilization of a stable MgO crucible, suppression of the KCl evaporation, and isothermal heat treatment at a temperature close to the melting temperature of the oxide precursor in the flux. Morphology, phase purity, and chemical composition of grown crystals were determined by various analysis methods while the superconducting properties were studied by magnetization and resistivity measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).Google Scholar
2.Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., and LePage, Y., Phys. Rev B 38, 8885 (1988).Google Scholar
3.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).Google Scholar
4.Matsubara, I., Tanigawa, H., Ogura, T., Yamashita, H., Kinoshita, M., and Kawai, T., Appl. Phys. Lett. 58, 409 (1991).Google Scholar
5.Matsubara, I., Yamashita, H., and Kawai, T., J. Cryst. Growth 128, 719 (1993).Google Scholar
6.Chen, W., Franck, J.P., and Jung, J., Phys. Rev B 60, 3527 (1999).Google Scholar
7.Fujii, T., Watanabe, T., and Matsuda, A., J. Cryst. Growth 175, 223 (2001).Google Scholar
8.Arendt, R., J. Solid State Chem. 8, 339 (1973).Google Scholar
9.Schneemeyer, L.F., Dover, R.B. van, Glarum, S.H., Sunshine, S.A., Fleming, R.M., Batlogg, B., Siegrist, T., Marshall, J.H., Waszczak, J.V., and Rupp, L.W., Nature 332, 422 (1988).Google Scholar
10.Katsui, A., Jpn. J. Appl. Phys. 27, L844 (1988).Google Scholar
11.Balestrino, G., Milani, E., Paoletti, A., Tebano, A., Wang, Y.H., Ruosi, A., Vaglio, R., Valentino, M., and Paroli, P., Appl. Phys. Lett. 64, 1735 (1994).Google Scholar
12.Osipov, V.N., Nosov, Yu. G., Gurin, V.N., Zimkin, I.N., Kartenko, N.F., and Nikanorov, S.P., Sov. Phys. Solid State 36, 2451 (1994).Google Scholar
13.Chu, S. and Mc, M.E.Henry, J. Mater. Res. 13, 589 (1998).Google Scholar
14.Goroina, J.L., Kaljuzhnaia, G.A., Martovitsky, V.P., Rodin, V.V., Sentjurina, N.N., and Stepanov, V.A., Solid State Commun. 110, 287 (1999).Google Scholar
15.Majewski, P., Adv. Mater. 6, 460 (1994).Google Scholar
16.Yasuda, T. and Takano, S., Jpn. J. Appl. Phys. 30, L349 (1991).Google Scholar
17.Majewski, P., Hettich, B., Schulze, K., and Petzow, G., Adv. Mater. 3, 488 (1991).Google Scholar
18.M’Hamdi, E.M. and Lacour, C., Ann. Chim. Fr. 17, 421 (1992); 18, 139 (1993).Google Scholar
19.Sastry, P.V.P.S.S. and West, A.R., Physica C 232, 63 (1994); 250, 87 (1995).Google Scholar
20.Grivel, J-C. and Flukiger, R., Supercond. Sci. Technol. 11, 288 (1998).Google Scholar
21.Lee, S., Kwon, K.J., Kim, W.S., and Lee, S-I., Physica C 251, 149 (1995).Google Scholar
22.Han, P.D. and Payne, D.A., J. Cryst. Growth 104, 201 (1990).Google Scholar
23.Lee, S., Yamamoto, A., and Tajima, S., J. Mater. Res. (in press).Google Scholar
24.Walton, A.G., The formation and properties of precipitates (Interscience Publishers, New York, 1967), p. 71.Google Scholar
25.Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).Google Scholar
26.Hong, B. and Mason, T., J. Am. Ceram. Soc. 74, 1045 (1991).Google Scholar
27.Lee, S., Eltsev, Yu., Yamamoto, A., and Tajima, S. (submitted).Google Scholar