Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T20:52:32.877Z Has data issue: false hasContentIssue false

Creation of single oxygen vacancy on titanium dioxide surface

Published online by Cambridge University Press:  07 June 2012

Taketoshi Minato*
Affiliation:
International Advanced Research and Education Organization, Tohoku University, 6-3 Aoba, Sendai 980-8598, Japan; and Surface and Interface Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Maki Kawai*
Affiliation:
Department of Advanced Materials Science, University of Tokyo, Kashiwa-shi 277-8561, Japan
Yousoo Kim*
Affiliation:
Surface and Interface Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
*
a)Address all correspondence to these authors. e-mail: minato@m.tohoku.ac.jp
c)e-mail: ykim@riken.jp
Get access

Abstract

Physical and chemical properties of solid materials are modified by introducing defects, which disarrange the atomic periodic structure. Typical example is oxygen vacancies on titanium dioxide (TiO2) surfaces. Oxygen vacancies on TiO2 surfaces provide new physical and chemical surface properties, such as conductivity, catalytic activity, hydrophilicity, etc. To date, annealing, electron-/photo-stimulated desorption, and chemical reaction have been reported to create oxygen vacancies on TiO2 surfaces. However, these techniques do not allow position control of the defects at the atomic scale. We report the creation of single oxygen vacancy using a scanning tunneling microscope (STM). This technique creates oxygen vacancy at desired site. In addition, based on the experimental findings, we discuss the mechanism of manipulating atomic defects using the STM.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Henrich, V.E.: The Surface Science of Metal Oxide (Cambridge University Press, Cambridge, 1994).Google Scholar
2.Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
3.Pang, C.L., Lindsay, R., and Thornton, G.: Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328 (2008).CrossRefGoogle Scholar
4.Dohnalek, Z., Lyubinetsky, I., and Rousseau, R.: Thermally-driven processes on rutile TiO2(110)-(1 x 1): A direct view at the atomic scale. Prog. Surf. Sci. 85, 161 (2010).CrossRefGoogle Scholar
5.Henderson, M.A.: A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185 (2011).CrossRefGoogle Scholar
6.Linsebigler, A.L., Lu, G., and Yates, J.T. Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95(3), 735 (1995).CrossRefGoogle Scholar
7.Stevanovic, A., Büttner, M., Zhang, Z., and Yates, J.T. Jr.: Photoluminescence of TiO2: Effect of UV light and adsorbed molecules on surface band structure. J. Am. Chem. Soc. 134(1), 324 (2012).CrossRefGoogle ScholarPubMed
8.Hendry, E., Wang, F., Shan, J., Heinz, T.F., and Bonn, M.: Electron transport in TiO2 probed by THz time-domain spectroscopy. Phys. Rev. B 69, 081101(R) (2004).CrossRefGoogle Scholar
9.Hendry, E., Koeberg, M., O’Regan, B., and Bonn, M.: Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 6(4), 755 (2006).Google Scholar
10.Henderson, M.A.: An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption. Surf. Sci. 355, 151 (1996).Google Scholar
11.Minato, T., Izumi, Y., Aika, K-i., Ishiguro, A., Nakajima, T., and Wakatsuki, Y.: Nitric oxide reduction by carbon monoxide over supported hexaruthenium cluster catalysts. 1. The active site structure that depends on supporting metal oxide and catalytic reaction conditions. J. Phys. Chem. B 107(34), 9022 (2003).CrossRefGoogle ScholarPubMed
12.Yim, C.M., Pang, C.L., and Thornton, G.: Oxygen vacancy origin of the surface band-gap state of TiO2(110). Phys. Rev. Lett. 104, 036806 (2010).Google Scholar
13.Papageorgiou, A.C., Beglitis, N.S., Pang, C.L., Teobaldi, G., Cabailh, G., Chen, Q., Fisher, A.J., Hofer, W.A., and Thornton, G.: Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl. Acad. Sci. U.S.A. 107, 2391 (2010).Google Scholar
14.Wendt, S., Sprunger, P.T., Lira, E., Madsen, G.K.H., Li, Z.S., Hansen, J.O., Matthiesen, J., Blekinge-Rasmussen, A., Laegsgaard, E., Hammer, B., and Besenbacher, F.: The role of interstitial sites in the Ti3d defect state in the band gap of Titania. Science 320, 1755 (2008).CrossRefGoogle Scholar
15.Matthey, D., Wang, J.G., Wendt, S., Matthiesen, J., Schaub, R., Laegsgaard, E., Hammer, B., and Besenbacher, F.: Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315, 1692 (2007).Google Scholar
16.Wendt, S., Schaub, R., Matthiesen, J., Vestergaard, E.K., Wahlstrom, E., Rasmussen, M., Thostrup, P., Molina, L.M., Laegsgaard, E., Stensgaard, I., Hammer, B., and Besenbacher, F.: Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 598, 226 (2005).CrossRefGoogle Scholar
17.Onda, K., Li, B., Zhao, J., Jordan, K.D., Yang, J.L., and Petek, H.: Wet electrons at the H2O/TiO2(110) surface. Science 308, 1154 (2005).Google Scholar
18.Li, B., Zhao, J., Onda, K., Jordan, K.D., Yang, J., and Petek, H.: Ultrafast interfacial proton-coupled electron transfer. Science 311, 1436 (2006).CrossRefGoogle ScholarPubMed
19.Zhao, J., Li, B., Onda, K., Feng, M., and Petek, H.: Solvated electrons on metal oxide surfaces. Chem. Rev. 106(10), 4402 (2006).CrossRefGoogle ScholarPubMed
20.Chen, M.S. and Goodman, D.W.: The structure of catalytically active gold on titania. Science 306, 252 (2004).CrossRefGoogle Scholar
21.Minato, T., Susaki, T., Shiraki, S., Kato, H.S., Kawai, M., and Aika, K-i.: Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM. Surf. Sci. 566568, 1012 (2004).Google Scholar
22.Minato, T., Sainoo, Y., Kim, Y., Kato, H.S., Aika, K-i., Kawai, M., Zhao, J., Petek, H., Huang, T., He, W., Wang, B., Wang, Z., Zhao, Y., Yang, J.L., and Hou, J.G.: The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface. J. Chem. Phys. 130, 124502 (2009).CrossRefGoogle ScholarPubMed
23.Aono, M. and Hasiguti, R.R.: Interaction and ordering of lattice-defects in oxygen-deficient rutile TiO2-x. Phys. Rev. B 48, 12406 (1993).CrossRefGoogle ScholarPubMed
24.Henrich, V.E., Dresselhaus, G., and Zeiger, H.J.: Observation of 2-dimensional phases associated with defect states on surface of TiO2. Phys. Rev. Lett. 36, 1335 (1976).CrossRefGoogle Scholar
25.Knotek, M.L. and Feibelman, P.: Ion desorption by core-hole auger decay. Phys. Rev. Lett. 40, 964 (1978).Google Scholar
26.Suzuki, S., Fukui, K., Onishi, H., and Iwasawa, Y.: Hydrogen adatoms on TiO2(110)-(1x1) characterized by scanning tunneling microscopy and electron stimulated desorption. Phys. Rev. Lett. 84, 2156 (2000).Google Scholar
27.Bikondoa, O., Pang, C.L., Ithnin, R., Muryn, C.A., Onishi, H., and Thornton, G.: Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189 (2006).Google Scholar
28.Kajita, S., Minato, T., Kato, H.S., Kawai, M., and Nakayama, T.: First-principles calculations of hydrogen diffusion on rutile TiO2(110) surfaces. J. Chem. Phys. 127, 104709 (2007).Google Scholar
29.Cui, X.F., Wang, B., Wang, Z., Huang, T., Zhao, Y., Yang, J.L., and Hou, J.G.: Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1 x 1). J. Chem. Phys. 129, 044703 (2008).Google Scholar
30.Acharya, D.P., Ciobanu, C.V., Camillone, N., and Sutter, P.: Mechanism of electron-induced hydrogen desorption from hydroxylated rutile TiO2(110). J. Phys. Chem. C 114, 21510 (2010).Google Scholar
31.Minato, T., Kajita, S., Pang, C.L., Asao, N., Yamamoto, Y., Nakayama, T., Kawai, M., and Kim, Y.: in preparation.Google Scholar