Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T20:00:10.173Z Has data issue: false hasContentIssue false

Corn stover–derived biochar for efficient adsorption of oxytetracycline from wastewater

Published online by Cambridge University Press:  20 June 2019

Min Zhang
Affiliation:
College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
Jun Meng*
Affiliation:
Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Shenyang 110866, China
Qingyu Liu
Affiliation:
College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
Shiyan Gu
Affiliation:
College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
Ling Zhao
Affiliation:
College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
Mengyao Dong*
Affiliation:
Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
Jiaoxia Zhang
Affiliation:
School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
Hua Hou
Affiliation:
College of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Zhanhu Guo
Affiliation:
Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
*
a)Address all correspondence to these authors. e-mail: mengjun1217@163.com
Get access

Abstract

Biochar conversion from corn stover was evaluated under various process conditions, and the absorption capacity of biochar was investigated for the removal of oxytetracycline in wastewater. Biochar was prepared at lower carbonization temperatures (200–500 °C) and was used in three different concentrations of chemical oxygen wastewater. The results showed that the biochar prepared at the temperature range of 200–500 °C had a faster sorption rate and shorter sorption equilibrium time compared to biochar produced at higher temperatures. The longest time to reach sorption equilibrium was 9 h for biochar obtained at 200 °C. However, the biochar prepared at 500 °C required only 0.5 h to reach the sorption equilibrium. The corn stover-biochar had the highest sorption capacity of 246.3 mg/g for oxytetracycline at 30 °C. The adsorption kinetics was consistent with pseudo–second-order kinetics. This study provides a theoretical basis for the conversion of corn stover into biochar as efficient sorbents.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hu, Q., Zhou, N., Gong, K., Liu, H., Liu, Q., Sun, D., Wang, Q., Shao, Q., Liu, H., Qiu, B., and Guo, Z.: Intracellular polymer substances induced conductive polyaniline for improved methane production from anaerobic wastewater treatment. ACS Sustainable Chem. Eng. 7, 5912 (2019).CrossRefGoogle Scholar
Zhang, J., Li, P., Zhang, Z., Wang, X., Tang, J., Liu, H., Shao, Q., Ding, T., Umar, A., and Guo, Z.: Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. J. Colloid Interface Sci. 542, 159 (2019).CrossRefGoogle ScholarPubMed
Zhao, Z., Bai, P., Misra, R., Dong, M., Guan, R., Li, Y., Zhang, J., Tan, L., Gao, J., Ding, T., Du, W., and Guo, Z.: AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. J. Alloys Compd. 792, 203 (2019).CrossRefGoogle Scholar
Zhao, Z., Guan, R., Zhang, J., Zhao, Z., and Bai, P.: Effects of process parameters of semisolid stirring on microstructure of Mg–3Sn–1Mn–3SiC (wt%) strip processed by rheo-rolling. Acta Metall. Sin. 30, 66 (2017).CrossRefGoogle Scholar
Xie, W., Cheng, H., Chu, Z., Chen, Z., and Long, C.: Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres. Ceram. Int. 37, 1947 (2011).CrossRefGoogle Scholar
Zhao, Y., Qi, L., Jin, Y., Wang, K., Tian, J., and Han, P.: The structural, elastic, electronic properties and Debye temperature of D022-Ni3V under pressure from first-principles. J. Alloys Compd. 647, 1104 (2015).CrossRefGoogle Scholar
Hou, C., Wang, J., Du, W., Wang, J., Du, Y., Liu, C., Zhang, J., Hou, H., Dang, F., Zhao, L., and Guo, Z.: One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J. Mater. Chem. A 7, 13460–13472 (2019).CrossRefGoogle Scholar
Xie, W., Chen, Z., Cheng, H., Chu, Z., and Kuang, J.: Effect of oxidation time on the complex permittivity of hollow, porous carbon fibers. N. Carbon Mater. 26, 441 (2011).Google Scholar
Kirubasankar, B., Murugadoss, V., Lin, J., Ding, T., Dong, M., Liu, H., Zhang, J., Li, T., Wang, N., Guo, Z., and Angaiaha, S.: In situ grown nickel selenide onto graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414 (2018).CrossRefGoogle Scholar
Sheng, Y., Yang, J., Wang, F., Liu, L., Liu, H., Yan, C., and Guo, Z.: Sol–gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 465, 154 (2019).CrossRefGoogle Scholar
Jiang, D., Wang, Y., Li, B., Sun, C., Wu, Z., Yan, H., Xing, L., Qi, S., Li, Y., Liu, H., Wei, W., Wang, X., Ding, T., and Guo, Z.: Flexible sandwich structural strain sensor based on silver nanowires decorated self-healing substrate. Macromol. Mater. Eng., 1900074 (2019). doi: 10.1002/mame.201900074.CrossRefGoogle Scholar
Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C., Liu, H., Murugadoss, V., Zhang, J., Wang, Y., and Guo, Z.: Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Composites, Part B 167, 396 (2019).CrossRefGoogle Scholar
Xie, W., Cheng, H., Kuang, J., Chen, Z., and Chu, Z.: Effect of heating rate on the complex permittivity of hollow-porous carbon fibers. J. Inorg. Mater. 26, 939 (2011).CrossRefGoogle Scholar
Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N., Wei, R., Angaiah, S., and Guo, Z.: Electromagnetic interference shielding polymers and nanocomposites—A review. Polym. Rev. 59, 280 (2019).CrossRefGoogle Scholar
Liang, T., Qi, L., Ma, Z., Xiao, Z., Wang, Y., Liu, H., Zhang, J., Guo, Z., Liu, C., Xie, W., Ding, T., and Lu, N.: Experimental study on thermal expansion coefficient of composite multi-layered flaky gun propellants. Composites, Part B 166, 428 (2019).CrossRefGoogle Scholar
Dong, M., Li, Q., Liu, H., Liu, C., Wujcik, E., Shao, Q., Ding, T., Mai, X., Shen, C., and Guo, Z.: Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid particle erosion resistance. Polymer 158, 381 (2018).CrossRefGoogle Scholar
Dong, M., Wang, C., Liu, H., Liu, C., Shen, C., Zhang, J., Jia, C., Ding, T., and Guo, Z.: Enhanced solid particle erosion properties of thermoplastic polyurethane-carbon nanotube nanocomposites. Macromol. Mater. Eng. 304, 1900010 (2019).CrossRefGoogle Scholar
Zhao, W., Li, X., Yin, R., Qian, L., Huang, X., Liu, H., Zhang, J., Wang, J., Ding, T., and Guo, Z.: Urchin-like NiO–NiCo2O4 heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li–O2 batteries. Nanoscale 11, 50 (2019).CrossRefGoogle Scholar
Shi, Z., Wu, C., Gu, Y., Liang, Y., Xu, G., Liu, H., Zhang, J., Hou, H., Zhang, J., and Guo, Z.: Preparation and characterization of mesoporous CuO/ZSM-5 catalysts for automotive exhaust purification. Sci. Adv. Mater. (2019). (in press). doi: 10.1166/sam.2019.3559.CrossRefGoogle Scholar
Guo, J., Song, H., Liu, H., Luo, C., Ren, Y., Ding, T., Khan, M., Young, D., Liu, X., Zhang, X., Kong, J., and Guo, Z.: Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorber with enhanced flame retardancy. J. Mater. Chem. C 5, 5334 (2017).CrossRefGoogle Scholar
Cheng, C., Fan, R., Ren, Y., Ding, T., Qian, L., Guo, J., Li, X., An, L., Lei, Y., Yin, Y., and Guo, Z.: Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9, 5779 (2017).CrossRefGoogle ScholarPubMed
Zhao, Z., Li, J., Bai, P., Qu, H., Liang, M., Liao, H., Wu, L., Huo, P., Liu, H., and Zhang, J.: Microstructure and mechanical properties of TiC-reinforced 316L stainless steel composites fabricated using selective laser melting. Metals 9, 267 (2019).CrossRefGoogle Scholar
Le, K., Wang, Z., Wang, F., Wang, Q., Shao, Q., Murugadoss, V., Wu, S., Liu, W., Liu, J., Gao, Q., and Guo, Z.: Sandwich-like NiCo layered double hydroxides/reduced graphene oxide nanocomposite cathode for high energy density asymmetric supercapacitors. Dalton Trans. 48, 5193 (2019).CrossRefGoogle Scholar
Hao, L., Zhao, W., Peng, Y., Sun, N., Li, D., Liu, H., Wang, X., Umar, A., and Guo, Z.: Precise determination of trace hydrogen in SA508-3 steel for nuclear reactor pressure vessels. Sci. Adv. Mater. 10, 1651 (2018).CrossRefGoogle Scholar
Wang, C., He, Z., Xie, X., Mai, X., Li, Y., Li, T., Zhao, M., Yan, C., Liu, H., Wujcik, E., and Guo, Z.: Controllable cross-linking anion exchange membranes with excellent mechanical and thermal properties. Macromol. Mater. Eng. 3, 1700462 (2018).CrossRefGoogle Scholar
Shi, Z., Wu, C., Wu, Y., Liu, H., Xu, G., Deng, J., Gu, H., Liu, H., Zhang, J., Umar, A., Ma, Y., and Guo, Z.: Optimization of epoxypinane synthesis by silicotungstic acid supported on SBA-15 catalyst using response surface methodology. Sci. Adv. Mater. 11, 699 (2019).CrossRefGoogle Scholar
Shi, Z., Jia, C., Wang, D., Deng, J., Xu, G., Wu, C., Dong, M., and Guo, Z.: Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide. Int. J. Biol. Macromol. 133, 964 (2019).CrossRefGoogle ScholarPubMed
Hou, C., Tai, Z., Zhao, L., Zhai, Y., Hou, Y., Fan, Y., Dang, F., Wang, J., and Liu, H.: High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J. Mater. Chem. A 6, 9723 (2018).CrossRefGoogle Scholar
Jiao, Y., Zhang, J., Liu, S., Liang, Y., Li, S., Zhou, H., and Zhang, J.: The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci. Adv. Mater. 10, 1706 (2018).CrossRefGoogle Scholar
Zhao, Z., Bai, P., Li, L., Li, J., Wu, L., Huo, P., and Tan, L.: The reaction thermodynamics during plating Al on graphene process. Materials 12, 330 (2019).CrossRefGoogle ScholarPubMed
Xu, G., Shi, Z., Zhao, Y., Deng, J., Dong, M., Liu, C., Murugadoss, V., Mai, X., and Guo, Z.: Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int. J. Biol. Macromol. 126, 376 (2019).CrossRefGoogle Scholar
Zhao, Y., Zhang, B., Hou, H., Chen, W., and Wang, M.: Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J. Mater. Sci. Technol. 35, 1044 (2019).CrossRefGoogle Scholar
Zhao, Y., Tian, X., Zhao, B., Sun, Y., Guo, H., Dong, M., Liu, H., Wang, X., Guo, Z., Umar, A., and Hou, H.: Precipitation sequence of middle Al concentration alloy using the inversion algorithm and microscopic phase field model. Sci. Adv. Mater. 10, 1793 (2018).CrossRefGoogle Scholar
Samsuri, A.W., Sadegh-Zadeh, F., and Seh-Bardan, B.J.: Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int. J. Environ. Sci. Technol. 11, 967 (2014).CrossRefGoogle Scholar
Ameloot, N., Graber, E.R., and Verheijen, F.G.A.: Interactions between biochar stability and soil organisms: Review and research needs. Eur. J. Soil Sci. 64, 379 (2013).CrossRefGoogle Scholar
Aghababaei, A., Ncibi, M.C., and Sillanpää, M.: Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues. Bioresour. Technol. 239, 28 (2017).CrossRefGoogle ScholarPubMed
Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M.B., and Hay, A.G.: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn stover in aqueous solution. Bioresour. Technol. 2, 8877 (2011).CrossRefGoogle Scholar
Cruz, E., Fournier, M.L., García, F., Molina, A., Chavarría, G., Alfaro, M., Ramírez, F., and Rodríguez, C.: Hazard prioritization and risk characterization of antibiotics in an irrigated Costa Rican region used for intensive crop, livestock and aquaculture farming. J. Environ. Biol. 35, 85 (2014).Google Scholar
Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang, P., Li, J., Tsang, D.C.W., Bolan, N.S., Rinklebe, J., and Wang, H.: Under single and ternary systems biochar by KOH-modified oxytetracycline of norfloxacin, sulfamerazine and sorption. Bioresour. Technol. 263, 385 (2018).CrossRefGoogle ScholarPubMed
Gong, K., Hu, Q., Yao, L., Li, M., Sun, D., Shao, Q., Qiu, B., and Guo, Z.: Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr(VI) removal from wastewater. ACS Sustainable Chem. Eng. 6, 7283 (2018).CrossRefGoogle Scholar
Xie, X., Huang, J., Zhang, Y., Tong, Z., Liao, A., Guo, X., Qin, Z., and Guo, Z.: Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater. Korean J. Chem. Eng. 36, 226 (2019).CrossRefGoogle Scholar
Sun, S., Zhu, L., Liu, X., Wu, L., Dai, K., Liu, C., Shen, C., Guo, X., Zheng, G., and Guo, Z.: Superhydrophobic shish-kebab membrane with self-cleaning and oil/water separation properties. ACS Sustainable Chem. Eng. 6, 9866 (2018).CrossRefGoogle Scholar
Kang, H., Cheng, Z., Lai, H., Ma, H., Liu, Y., Mai, X., Wang, Y., Shao, Q., Xiang, L., Guo, X., and Guo, Z.: Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation. Sep. Purif. Technol. 201, 193 (2018).CrossRefGoogle Scholar
Li, Z., Wang, B., Qin, X., Wang, Y., Liu, C., Shao, Q., Wang, N., Zhang, J., Wang, Z., Shen, C., and Guo, Z.: Superhydrophobic/superoleophilic polycarbonate/carbon nanotubes porous monolith for selective oil adsorption from water. ACS Sustainable Chem. Eng. 6, 13747 (2018).CrossRefGoogle Scholar
Zhang, H., Lyu, S., Zhou, X., Gu, H., Ma, C., Wang, C., Ding, T., Shao, Q., Liu, H., and Guo, Z.: Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J. Colloid Interface Sci. 536, 245 (2019).CrossRefGoogle ScholarPubMed
Zhang, X., Wang, X., Liu, X., Lv, J., Wang, Y., Zheng, G., Liu, H., Liu, C., Guo, Z., and Shen, C.: Porous polyethylene bundles with enhanced hydrophobicity and pumping oil-recovery ability via skin-peeling. ACS Sustainable Chem. Eng. 6, 12580 (2018).CrossRefGoogle Scholar
Gong, K., Hu, Q., Xiao, Y., Cheng, X., Liu, H., Wang, N., Qiu, B., and Guo, Z.: Triple layered core-shell ZVI@carbon@polyaniline composites enhanced electron utilization in Cr(VI) reduction. J. Mater. Chem. A 6, 11119 (2018).CrossRefGoogle Scholar
Zhao, Z., An, H., Lin, J., Feng, M., Murugadoss, V., Ding, T., Liu, H., Shao, Q., Man, X., Wang, N., Gu, H., Angaiah, S., and Guo, Z.: Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 19, 873–882 (2019).CrossRefGoogle ScholarPubMed
Huang, J., Cao, Y., Shao, Q., Peng, X., and Guo, Z.: Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: Morphology dependence of fibrillar vs particulate structures. Ind. Eng. Chem. Res. 56, 10689 (2017).CrossRefGoogle Scholar
Huang, J., Li, Y., Cao, Y., Peng, F., Cao, Y., Shao, Q., Liu, H., and Guo, Z.: Hexavalent chromium removal over magnetic carbon nanoadsorbent: Synergistic effect of fluorine and nitrogen co-doping. J. Mater. Chem. A 6, 13062 (2018).CrossRefGoogle Scholar
Gong, K., Guo, S., Zhao, Y., Hu, Q., Liu, H., Sun, D., Li, M., Qiu, B., and Guo, Z.: Bacteria cell templated porous polyaniline facilitated detoxification and recovery of hexavalent chromium. J. Mater. Chem. A 6, 16824 (2018).CrossRefGoogle Scholar
Das, O., Kim, N.K., Hedenqvist, M.S., Lin, R.J.T., Sarmah, A.K., and Bhattacharyya, D.: An attempt to find a suitable biomass for biochar-based polypropylene biocomposites. Environ. Manage. 62, 403 (2018).CrossRefGoogle ScholarPubMed
Thorsten, J., Nicola, C., Andreas, S., and Schmidt, B.: Fate of the veterinary antibiotic 14C-difloxacin in soil including simultaneous amendment of pig manure with the focus on non-extractable residues. J. Environ. Sci. Health, Part B 47, 858 (2012).Google Scholar
Wang, X. and Xing, B.: Sorption of organic contaminants by biopolymer-derived chars. Environ. Sci. Technol. 41, 8342 (2007).CrossRefGoogle ScholarPubMed
Xu, R., Xiao, S., Yuan, J., and Zhao, A.: Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour. Technol. 102, 10293 (2011).CrossRefGoogle ScholarPubMed
Yang, Y., Lin, X., Wei, B., Zhao, Y., and Wang, J.: Evaluation of adsorption potential of bamboo biochar for metal-complex dye: Equilibrium, kinetics and artificial neural network modeling. Int. J. Environ. Sci. Technol. 11, 1093 (2014).CrossRefGoogle Scholar
Chen, Y., Zhang, H., and Luo, Y.: Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China. Environ. Monit. Assess. 184, 2205 (2012).CrossRefGoogle ScholarPubMed
Luo, X., Pei, F., Wang, W., Qian, H., Miao, K., Pan, Z., Chen, Y., and Feng, G.: Microwave synthesis of hierarchical porous materials with various structures by controllable desilication and recrystallization. Microporous Mesoporous Mater. 262, 148 (2018).CrossRefGoogle Scholar
Liu, M., Meng, Q., Yang, Z., Zhao, X., and Liu, T.: Ultra-long-term cycling stability of an integrated carbon–sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54, 5090 (2018).CrossRefGoogle Scholar
Qian, Y., Yuan, Y., Wang, H., Liu, H., Zhang, J., Shi, S., Guo, Z., and Wang, N.: Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J. Mater. Chem. A 6, 24676 (2018).CrossRefGoogle Scholar
Zhao, J., Ge, S., Liu, L., Shao, Q., Mai, X., Zhao, C.X., Hao, L., Wu, T., Yu, Z., and Guo, Z.: Microwave solvothermal fabrication of zirconia hollow microspheres with different morphologies using pollen templates and their dye adsorption removal. Ind. Eng. Chem. Res. 57, 231 (2018).CrossRefGoogle Scholar
Sun, Z., Zhang, L., Dang, F., Liu, Y., Fei, Z., Shao, Q., Lin, H., Guo, J., Xiang, L., Yerra, N., and Guo, Z.: Experimental and simulation understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19, 3288 (2017).CrossRefGoogle Scholar
Wang, Y., Zhou, P., Luo, S., Guo, S., Lin, J., Shao, Q., Guo, X., Liu, Z., Shen, J., Wang, B., and Guo, Z.: In situ polymerized PAA/alumina nanocomposites for Pb2+ adsorption. Adv. Polym. Technol. 37, 2981 (2018).CrossRefGoogle Scholar
Wang, Y., Zhou, P., Luo, S., Liao, X., Wang, B., Shao, Q., Guo, X., and Guo, Z.: Controllable synthesis of monolayer poly(acrylic acid) on channel surface of mesoporous alumina for Pb(II) adsorption. Langmuir 34, 7859 (2018).CrossRefGoogle ScholarPubMed
Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., and Guo, Z.: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907 (2019).CrossRefGoogle Scholar
Sun, H., Yang, Z., Pu, Y., Dou, W., Wang, C., Wang, W., Hao, X., Chen, S., Shao, Q., Dong, M., Wu, S., Ding, T., and Guo, Z.: Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J. Colloid Interface Sci. 547, 40 (2019).CrossRefGoogle ScholarPubMed
Lin, B., Lin, Z., Chen, S., Yu, M., Li, W., Gao, Q., Dong, M., Shao, Q., Wu, S., Ding, T., and Guo, Z.: Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Trans. 48, 8279–8287 (2019).CrossRefGoogle ScholarPubMed
Wu, N., Xu, D., Wang, Z., Wang, F., Liu, J., Liu, W., Shao, Q., Liu, H., Gao, Q., and Guo, Z.: Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433 (2019).CrossRefGoogle Scholar
Xie, W., Zhu, X., Yi, S., Kuang, J., Cheng, H., Tang, W., and Deng, Y.: Electromagnetic absorption properties of natural microcrystalline graphite. Mater. Des. 90, 38 (2016).CrossRefGoogle Scholar
Liu, M., Yang, Z., Sun, H., Lai, C., Zhao, X., Peng, H., and Liu, T.: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735 (2016).CrossRefGoogle Scholar
Gu, H., Xu, X., Dong, M., Xie, P., Shao, Q., Fan, R., Liu, C., Wu, S., Wei, R., and Guo, Z.: Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon 147, 550 (2019).CrossRefGoogle Scholar
Wu, N., Liu, C., Xu, D., Liu, J., Liu, W., Liu, H., Zhang, J., Xie, W., and Guo, Z.: Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. J. Mater. Chem. C 7, 1659 (2019).CrossRefGoogle Scholar
Qu, Z., Shi, M., Wu, H., Liu, Y., Jiang, J., and Yan, C.: An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J. Power Sources 410–411, 179 (2019).CrossRefGoogle Scholar
Zhu, G., Cui, X., Zhang, Y., Chen, S., Dong, M., Liu, H., Shao, Q., Ding, T., Wu, S., and Guo, Z.: Poly(vinyl butyral)/graphene oxide/poly(methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer 172, 415 (2019).CrossRefGoogle Scholar
Liu, M., Li, B., Zhou, H., Chen, C., Liu, Y., and Liu, T.: Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel-polyaniline hybrid with vertically aligned pores. Chem. Commun. 53, 2810 (2017).CrossRefGoogle ScholarPubMed
Yang, J., Yang, W., Wang, X., Dong, M., Liu, H., Wujcik, E.K., Shao, Q., Wu, S., Ding, T., and Guo, Z.: Synergistically toughening polyoxymethylene by methyl methacrylate-butadiene-styrene copolymer and thermoplastic polyurethane. Macromol. Chem. Phys., 1800567 (2019). doi: 10.1002/macp.201800567.CrossRefGoogle Scholar
Lin, Z., Lin, B., Wang, Z., Chen, S., Wang, C., Dong, M., Gao, Q., Shao, Q., Wu, S., Ding, T., Liu, H., and Guo, Z.: Facile preparation of 1T/2H-Mo(S1−xSex)2 nanoparticles for boosting hydrogen evolution reaction. Chemcatchem 11, 2217 (2019).CrossRefGoogle Scholar
Amenta, J.S.: A rapid chemical method for quantification of lipids separated by thin-layer chromatography. J. Lipid Res. 5, 270–572 (1964).Google ScholarPubMed