Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T01:32:10.723Z Has data issue: false hasContentIssue false

Continuous-wave InGaN laser diodes on copper and diamond substrates

Published online by Cambridge University Press:  31 January 2011

William S. Wong
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, California 94304
Michael Kneissl
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, California 94304
David W. Treat
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, California 94304
Mark Teepe
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, California 94304
Naoko Miyashita
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, California 94304
Alberto Salleo
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, California 94304
Noble M. Johnson
Affiliation:
XEROX Palo Alto Research Center, Electronics Materials Laboratory, 3333 Coyote Hill Road, Palo Alto, California 94304
Get access

Abstract

InGaN-based optoelectronics were integrated with dissimilar substrate materials using a novel thin-film laser lift-off (LLO) process. The LLO process was employed to integrate InGaN-based laser diodes (LDs) with Cu and diamond substrates. Separation of InGaN-based thin-film devices from their typical sapphire growth substrates was accomplished using a pulsed excimer laser in the ultraviolet regime incident through the transparent substrate. Characterization of the LDs before and after the sapphire substrate removal revealed no measurable degradation in device performance. Reduced threshold currents and increased differential quantum efficiences were measured for LDs on Cu due to a 50% reduction of the thermal impedence. Light output for LDs on Cu was two times greater than comparable LDs on sapphire with a maximum output of 100 mW. Increased light output for LDs on diamond was also measured with a maximum output of 80 mW.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matushita, T., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys., Part 2 37, L627 (1998).CrossRefGoogle Scholar
2Yablonovitch, E., Gmitter, T., Harbison, J.P., and Bhat, R., Appl. Phys. Lett. 51, 2222 (1987).CrossRefGoogle Scholar
3Yablonovitch, E., Kash, K., Gmitter, T.J., Florez, L.T., Harbison, J.P., and Colas, E., Electron. Lett. 25, 171 (1989).CrossRefGoogle Scholar
4Fastenau, J., Özbay, E., Tuttle, G., and Laabs, F., J. Electron. Mater. 24, 757 (1995).CrossRefGoogle Scholar
5Hikosaka, K., Mimura, T., and Joshin, K., Jpn. J. Appl. Phys. 20, L847 (1981).CrossRefGoogle Scholar
6Kelly, M.K., Ambacher, O., Dimitrov, R., Handschuh, R., and Stutzmann, M., Phys. Status Solidi A 159, R3 (1997).3.0.CO;2-F>CrossRefGoogle Scholar
7Wong, W.S., Sands, T, and Cheung, N.W., Appl. Phys. Lett. 72,599 (1998).CrossRefGoogle Scholar
8Wong, W.S., Wengrow, A.B., Cho, Y., Salleo, A., Quitoriano, N.J., Cheung, N.W., and Sands, T., J. Electron. Mater. 28, 1409 (1999).CrossRefGoogle Scholar
9Wong, W.S., Cheung, N.W., Sands, T., Kneissl, M., Bour, D.P., Mei, P., Romano, L.T., and Johnson, N.M., Appl. Phys. Lett. 77,2822 (2000).CrossRefGoogle Scholar
10Wong, W.S., Cheung, N.W., Sands, T., Kneissl, M., Bour, D.P., Mei, P., Romano, L.T., and Johnson, N.M., Appl. Phys. Lett. 75,1360 (1999).CrossRefGoogle Scholar
11Wong, W.S., Kneissl, M., Mei, P., Treat, D.W., Teepe, M., and Johnson, N.M., Jpn. J. Appl. Phys. 39, L1203 (2000).CrossRefGoogle Scholar
12Munir, Z.A. and Searcy, A.W., J. Chem. Phys. 42, 4233 (1965).CrossRefGoogle Scholar
13Newman, N., Ross, J., and Rubin, M., Appl. Phys. Lett. 62, 1242 (1993).CrossRefGoogle Scholar
14Allmen, M. Von and Blastter, A., Laser-Beam Interactions with Materials, Physical Principles and Applications, (2nd ed.) (Springer-Verlag, Berlin, Germany, 1995), pp. 4448.CrossRefGoogle Scholar
15Divakar, M.P., Introduction to the COSMOS/M Finitel Element Analysis System (Structural Research and Analysis Corporation, Santa Monica, CA, 1994).Google Scholar
16Thermochemical Properties of Inorganic Substances, edited by Knacke, O., Kubaschewski, O., and Hesselmann, K. (Springer Verlag, Berlin, Germany, 1991).Google Scholar
17Slack, G.A., J. Phys. Chem. Solids 38, 330 (1977).CrossRefGoogle Scholar
18Koshenko, V.I., Demidenko, A.F., Sabanova, L.D., Yachmenev, V.E., Gran, Y.M., and Radchenko, A.F., Inorg. Mater. 15, 1329 (1979).Google Scholar
19Sheleg, A. and Savastenko, V.A., Vesti. Akad. Navuk BSSR Ser. Fiz Mat. Novuk 1976, 126 (1976).Google Scholar
20Abramov, V.N., Karin, M.G., Kuznetsov, A.I., and Sidorin, K.K., Soviet Phys.'Solid State 21, 47 (1979).Google Scholar
21Gryvnak, D.A. and Burch, D.E., J. Opt. Soc. Am. 55, 625 (1965).CrossRefGoogle Scholar
22Kneissl, M., Bour, D.P., Romano, L.T., Walle, C.G. van de, Northrup, J.E., Wong, W.S., Treat, D.W., Teepe, M., Schmidt, T., and Johnson, N.M., Appl. Phys. Lett. 77, 1931 (2000).CrossRefGoogle Scholar
23Kneissl, M., Wong, W.S., Treat, D.W., Teepe, M., Miyashita, N., and Johnson, N.M., IEEE J. Sel. Top. Quantum Eletron. 7, 188 (2001).CrossRefGoogle Scholar
24Wong, W.S., Kneissl, M., Mei, P., Treat, D.W., Teepe, M., and Johnson, N.M., Appl. Phys. Lett. 78, 1198 (2001).CrossRefGoogle Scholar