Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T16:44:58.044Z Has data issue: false hasContentIssue false

Condensation of borazinic precursors for mesoporous boron nitride synthesis by carbon nanocasting

Published online by Cambridge University Press:  03 March 2011

P. Dibandjo
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 1918 Villeurbanne, France
F. Chassagneux
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 1918 Villeurbanne, France
L. Bois*
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 1918 Villeurbanne, France
C. Sigala
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 1918 Villeurbanne, France
P. Miele
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 1918 Villeurbanne, France
*
a) Address all correspondence to this author. e-mail: laurence.bois@univ-lyon1.fr
Get access

Abstract

The influence of different borazinic precursors on mesoporous boron nitride synthesis by using a nanocasting process of a mesoporous CMK-3 carbon is presented. Two borazinic precursors, the tri(methylamino)borazine (MAB) and the tri(chloro)borazine (TCB), have been converted to boron nitride (BN) inside the mesopores of a CMK-3 carbon mesoporous template by using thermal or chemical polycondensation processes. Ordered mesoporous boron nitride with a specific surface area around 800 m2/g, a mesoporous volume around 0.6 cm3/g, and a pore-size distribution located at 6 nm in diameter was synthesized by thermal condensation of a molecular MAB precursor. In addition, chemical condensation of TCB led to a disordered mesoporous boron nitride.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Paine, R.T. and Narula, C.J.: Synthetic routes to boron nitride. Chem. Rev. 90, 73 (1990).CrossRefGoogle Scholar
2Paine, R.T. and Sneddon, L.G.: Borazine-based polymers close in on commercial performance. CHEMTECH July 24, 29 (1994).Google Scholar
3Beck, J.S., Vartuli, J.C., Roth, W.J., and Leonowicz, M.E.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
4Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813 (2002).CrossRefGoogle ScholarPubMed
5Dabbs, D.M. and Aksay, I.A.: Self-assembled ceramics produced by complex fluid templation. Annu. Rev. Phys. Chem. 51, 601 (2000).CrossRefGoogle ScholarPubMed
6Polarz, S. and Antonietti, M.: Porous materials via nanocasting procedures: Innovative materials and learning about soft-matter organization. Chem. Commun. 22, 2593 (2002).Google Scholar
7Schüth, F. and Schmidt, W.: Microporous and mesoporous materials. Adv. Eng. Mat. 4, 269 (2002).3.0.CO;2-7>CrossRefGoogle Scholar
8Möller, K. and Bein, T.: Inclusion chemistry in periodic mesoporous hosts. Chem. Mater. 10, 2950 (1998).CrossRefGoogle Scholar
9Seayad, A.M. and Antonelli, D.M.: Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Adv. Mater. 16, 765 (2004).CrossRefGoogle Scholar
10Ma, R., Bando, Y., Zhu, H., Sato, T., Xu, C., and Wu, D.: Hydrogen uptake in boron nitride nanotubes at room temperature. J. Am. Chem. Soc. 124, 7672 (2002).Google Scholar
11Ryoo, R., Joo, S.H., and Jun, S.: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. 103, 7743 (1999).Google Scholar
12Lee, J., Yoon, S., Hyeon, T., Oh, S. M., and Kim, K.B.: Synthesis of a new mesoporous carbon and its application to electrical double-layer capacitors. Chem. Commun. 21, 2177 (1999).Google Scholar
13Zhao, D., Feng, J., Huo, Q., and Melosh, N.: Triblock copolymers synthesis of mesoporous silica with periodic 50 to 300 Å pores. Science 279, 548 (1998).CrossRefGoogle Scholar
14Jun, S., Joo, S.H., Ryoo, R., Kruk, M., and Jaroniec, M.: Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712 (2000).CrossRefGoogle Scholar
15Ryoo, R., Joo, S.H., Kruk, M., and Jaroniec, M.: Ordered mesoporous carbons. Adv. Mater. 13, 677 (2001).Google Scholar
16Lu, A.H., Schmidt, W., Spliethoff, B., and Schüth, F.: Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Adv. Mater. 15, 1602 (2003).CrossRefGoogle Scholar
17Kleitz, F., Choi, S.H., and Ryoo, R.: Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 17, 2136 (2003).CrossRefGoogle Scholar
18Parmentier, J., Saadhallah, S., Reda, M., Gibot, P., Roux, M., Vidal, L., Vix-Guterl, C., and Patarin, J.: New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes. J. Phys. Chem. Sol. 65, 139 (2004).CrossRefGoogle Scholar
19Lu, A.H., Schmidt, W., Taguchi, A., Spliethoff, B., Tesche, B., and Schüth, F.: Taking nanocasting one step further: replicating CMK-3 as a silica material. Angew. Chem., Int. Ed. Engl. 41, 3489 (2002).Google Scholar
20Lu, A.H., Schmidt, W., Spliethoff, B., and Schüth, F.: Synthesis and characterization of nanocast silica NCS-1 using CMK-3 as a template. Chem. Eur. J. 10, 6085 (2004).CrossRefGoogle ScholarPubMed
21Kang, M., Yi, S.H., and Lee, H.I.: Reversible replication between ordered mesoporous silica and mesoporous carbon. Chem. Commun. 17, 1944 (2002).CrossRefGoogle Scholar
22Kang, M., Kim, D., Yi, S.H., Han, J.U., Yie, J.E., and Kim, J.M.: Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catal. Today 93, 695 (2004).Google Scholar
23Dong, A., Ren, N., Tang, Y., Wang, Y., Zhang, Y., Hua, W., and Gao, Z.: General synthesis of mesoporous spheres of metal oxides and phosphates. J. Am. Chem. Soc. 125, 4976 (2003).CrossRefGoogle ScholarPubMed
24Sakthivel, A., Huang, S.H., Chen, W.H., Lan, Z.H., Chen, K.H., Kim, T.W., Ryoo, R., Chiang, A.S.T., and Liu, S.B.: Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chem. Mater. 16, 3168 (2004).Google Scholar
25Lindquist, D.A., Smith, D.A., Datye, A.K., Johnston, G.P., Borek, T.T., Schaeffer, R., and Paine, R.T.: Boron nitride and composite aerogels from borazine based polymers, in Better Ceramics Through Chemistry IV, edited by Zelinski, B.J.J., Brinker, C.J., Clark, D.E. and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 1029.CrossRefGoogle Scholar
26Perdigon-Melon, A., Auroux, A., Guimon, C., and Bonnetot, B.: Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic. J. Solid State Chem. 177, 609 (2004).Google Scholar
27Borovinskaya, I.P., Bunin, V.A., and Merzhanov, A.G.: Self-propagating high-temperature synthesis of high-porous boron nitride. Mendeleev Commun. 2, 47 (1997).CrossRefGoogle Scholar
28Han, W.Q., Brutchey, R., Tilley, T.D., and Zettl, A.: Activated boron nitride derived from activated carbon. Nano Lett. 4, 173 (2004).Google Scholar
29Dibandjo, P., Bois, L., Chassagneux, F., Cornu, D., Toury, B., Babonneau, F., and Miele, P.: Synthesis of boron nitride with ordered mesostructure. Adv. Mater. 17, 571 (2005).CrossRefGoogle Scholar
30Dibandjo, P., Chassagneux, F., Bois, L., Sigala, C., and Miele, P.: Comparison between SBA-15 silica and CMK-3 carbon nanocasting for mesoporous boron nitride synthesis. J. Mater. Chem. 15, 1917 (2005).Google Scholar
31Vinu, A., Terrones, M., Golberg, D., Hishita, S., Ariga, K., and Mori, T.: Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem. Mater. 17, 5887 (2005).Google Scholar
32Kimura, Y., Kubo, Y., and Hayashi, N.: High-performance boron-nitride fibers from poly(borazine) preceramics. Compos. Sci. Technol. 51, 173 (1994).CrossRefGoogle Scholar
33Toury, B., Duriez, C., Cornu, D., Miele, P., Vincent, C., Vaultier, M., and Bonnetot, B.: Influence of molecular precursor structure on the crystallinity of boron nitride. J. Solid State Chem. 154, 137 (2000).Google Scholar
34Bernard, S., Cornu, D., Miele, P., Vincent, H., and Bouix, J.: Pyrolysis of poly[2,4,6-tri(methylamino)borazine] and its conversion into BN fibers. J. Organomet. Chem. 657, 91 (2002).CrossRefGoogle Scholar
35Paine, R.T., Narula, C.K., Schaeffer, R., and Datye, A.K.: Formation of boron nitride coatings on metal oxides. Chem. Mater. 1, 486 (1989).Google Scholar
36Narula, C.K., Schaeffer, R., and Paine, R.T.: Synthesis of boron nitride ceramics from poly(borazinylamine) precursors. J. Am. Chem. Soc. 109, 5556 (1987).CrossRefGoogle Scholar
37Paciorek, K.J.L., Masuda, S.R., Kratzer, R.H., and Schmidt, W.R.: Processible precursor for boron nitride coatings and matrices. Chem. Mater. 3(1), 88 (1991).CrossRefGoogle Scholar
38Brown, C.A. and Laubengayer, A.W.: B-trichloroborazole. J. Am. Chem. Soc. 77, 3699 (1955).CrossRefGoogle Scholar
39Hedden, K.: Formation of methane from hydrogen and carbon at high temperatures and pressures. Z. Elektrochem. Angewandte Phys. Chem. 60, 652 (1962).Google Scholar
40Joo, S.H., Ryoo, R., Kruk, M., and Jaroniec, M.: Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal silicas prepared using block copolymer templates. J. Phys. Chem. 106, 4640 (2002).Google Scholar