Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T13:55:26.596Z Has data issue: false hasContentIssue false

Composition and Growth-Temperature Effect on the Microstructure of Epitaxial La1−x Srx MnO3 (x = 0, 0.2) Thin Films on (001) LaAlO3

Published online by Cambridge University Press:  31 January 2011

J.C. Jiang*
Affiliation:
Materials Science and Engineering Program, Mechanical Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803
E.I. Meletis
Affiliation:
Materials Science and Engineering Program, Mechanical Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803
K.I. Gnanasekar
Affiliation:
Materials Chemistry Division, Indira Gandhi Centre For Atomic Research, Kalpakkam - 603 102, India
*
a)Address all correspondence to this author. e-mail: Jiang@me.lsu.edu
Get access

Abstract

La0.8Sr0.2MnO3 (LSMO) and LaMnO3 (LMO) thin films epitaxially grown on (001) LaAlO3 substrate at 700 and 800°C were studied using cross-section and plan-view transmission electron microscopy. In both LSMO and LMO films deposited at 700°C, a two-layered structure was observed: a continuous cubic perovskite layer epitaxially grown on the substrate followed by epitaxially grown orthorhombic column nanostructures. The orthogonal nano columns in LSMO were very well defined with a narrow size distribution. The LMO films exhibited a somewhat distorted orthogonal shape for the nanostructured columns and a wider size distribution. LSMO and LMO epitaxial films deposited at 800°C consisted of only a continuous single layer of cubic perovskite. These results reveal that formation of epitaxial column nanostructures in the La1-xSrxMnO3 thin films strongly depends on the growth temperature. Sr substitution on La sites in La1-xSrxMnO3 can improve uniformity of column size distribution and perfection of the orthogonal shape of nano columns.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Helmolt, R. von, Wecker, J., Holzapfel, B., Schults, L., and Samwer, L., Phys. Rev. Lett. 71, 2331 (1993).CrossRefGoogle Scholar
2.Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).CrossRefGoogle Scholar
3.Ju, H.L., Kwon, C., Li, Q., Greene, R.L., and Venkatesan, T., Appl. Phys. Lett. 65, 2108 (1994).CrossRefGoogle Scholar
4.Manoharan, S.S., Vasanthacharya, N.Y., Hegde, M.S., Satyalakshmi, K.M., Prasad, V., and Subramanyam, S.V., J. Appl. Phys. 76, 3923 (1994).CrossRefGoogle Scholar
5.Jin, S., Tiefel, T.H., Mccormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994).CrossRefGoogle Scholar
6.Goodenough, J.B., Phys. Rev. 100, 564 (1955).CrossRefGoogle Scholar
7.DeGennes, P.G., Phys. Rev. 118, 141 (1960).CrossRefGoogle Scholar
8.Millis, A.J., Littlewood, P.B., and Shraiman, B.I., Phys. Rev. Lett. 74, 5144 (1995).CrossRefGoogle Scholar
9.Hwang, H.Y., Palstra, T.T.M., Cheong, S.W., and Batlogg, B., Phys. Rev. Lett. 75, 914 (1995).CrossRefGoogle Scholar
10.Hwang, H.Y., Palstra, T.T.M., Cheong, S.W., and Batlogg, B., Phys. Rev. B 52, 15046 (1995).CrossRefGoogle Scholar
11.Moritomo, Y., Asamitsu, A., and Tokura, Y., Phys. Rev. B 51, 16491 (1995).CrossRefGoogle Scholar
12.Mitchnell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., and Bader, S.D., Phys. Rev. B 54, 6172 (1996).CrossRefGoogle Scholar
13.Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T., and Tokura, Y., Nature 373, 407 (1995).CrossRefGoogle Scholar
14.Dabrowski, D., Xiong, X., Bukowski, Z., Dybzinski, R., Klamut, P.W., Siewenie, J.E., Chmaissem, O., Shaffer, J., Kimball, C.W., Jorgensen, J.D., and Short, S., Phys. Rev. B 60, 7006 (1999).CrossRefGoogle Scholar
15.Pan, X.Q., Jiang, J.C., Tian, W., Gan, Q., Rao, R.A., and Eom, C.B., J. Appl. Phys. 86, 4188 (1999).CrossRefGoogle Scholar
16.Jiang, J.C., Meletis, E.I., and Gnanasekar, K.I., Appl. Phys. Lett. 80, 4831 (2002).CrossRefGoogle Scholar
17.Jiang, J.C. and Pan, X.Q., J. Appl. Phys. 89, 6365 (2001).CrossRefGoogle Scholar
18.Shchukin, V.A., Ledenstov, N.N., Kop'ev, P.S., and Bimberg, D., Phys. Rev. Lett. 75, 2968 (1995).CrossRefGoogle Scholar
19.Jiang, J.C. and Pan, X.Q., Philos. Mag. Lett. 80, 271 (2000).CrossRefGoogle Scholar
20.Hartman, P. and Perdok, W.G., Acta Crystallogr. 8, 49 (1955).CrossRefGoogle Scholar