Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T07:23:57.477Z Has data issue: false hasContentIssue false

Comparative studies on total energetics of nonequivalent hexagonal polytypes for group IV semiconductors and group III nitrides

Published online by Cambridge University Press:  06 July 2012

Koji Moriguchi*
Affiliation:
Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fusocho, Amagasaki, Hyogo 660-0891, Japan
Kazuhito Kamei
Affiliation:
Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fusocho, Amagasaki, Hyogo 660-0891, Japan
Kazuhiko Kusunoki
Affiliation:
Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fusocho, Amagasaki, Hyogo 660-0891, Japan
Nobuyoshi Yashiro
Affiliation:
Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fusocho, Amagasaki, Hyogo 660-0891, Japan
Nobuhiro Okada
Affiliation:
Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fusocho, Amagasaki, Hyogo 660-0891, Japan
*
a)Address all correspondence to this author. e-mail: moriguch-kuj@sumitomometals.co.jp
Get access

Abstract

We report the results of the systematic investigation into correlations between energetics and hexagonal stacking configurations for carbon, silicon, SiC, BN, AlN, GaN, and InN polytypes with sp3-bonded networks. The atomistic geometry, energetics, and electronic structure for these compounds with up to the periodic stacking length of L = 8 have been carefully calculated based on the density functional theory within the generalized gradient approximation (GGA). Using the Axial Next-Nearest-Neighbor Ising model extracted from the GGA calculations, we have also studied the energetics for more than 6 million kinds of nonequivalent stacking polytypes with up to L = 30, whose configurations have been deduced by the efficient polytype generation algorithm [E. Estevez-Rams and J. Martinez-Mojicar, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 529 (2008)], and illustrated some trends of structural and energetic properties for these compounds.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Estevez-Rams, E. and Martinez-Mojicar, J.: The symmetry of HK codes representing close-packed structures and the efficient generation of non-equivalent polytypes of a given length. Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 529 (2008).CrossRefGoogle ScholarPubMed
Bernstein, N., Gotsis, H.J., Papaconstantopoulos, D.A., and Mehl, M.J.: Tight-binding calculations of the band structure and total energies of the various polytypes of silicon carbide. Phys. Rev. B 71, 075203 (2005).CrossRefGoogle Scholar
Raffy, C., Furthmüller, J., and Bechstedt, F.: Properties of hexagonal polytypes of group-IV elements from first-principles calculations. Phys. Rev. B 66, 075201 (2002).CrossRefGoogle Scholar
Kobayashi, K. and Komatsu, S.: First-principles study of BN, SiC, and AlN polytypes. J. Phys. Soc. Jpn. 77, 084703 (2008).CrossRefGoogle Scholar
Park, C.H., Cheong, B-H., Lee, K-H., and Chang, K.J.: Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 49, 4485 (1994).CrossRefGoogle Scholar
Limpijumnong, S. and Lambrecht, W.R.L.: Total energy differences between SiC polytypes revisited, Phys. Rev. B 57, 12017 (1998).CrossRefGoogle Scholar
Xue, X.Y., Zhang, R.Q., and Zhang, X.H.: Structural and electronic properties of 9R diamond polytype. Solid State Commun. 136, 41 (2005).CrossRefGoogle Scholar
Käckell, P., Wenzien, B., and Bechstedt, F.: Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations. Phys. Rev. B 50, 17037 (1994).CrossRefGoogle ScholarPubMed
Rutter, M.J. and Heine, V.: Energetics of stacking boundaries on the {0001} surfaces of silicon carbide. J. Phys. Condens. Matter 9, 8213 (1997).CrossRefGoogle Scholar
Jepps, N.W. and Page, T.F.: Polytypic transformations in silicon carbide. Prog. Cryst. Growth Charact. Mater. 7, 259 (1983).CrossRefGoogle Scholar
Jagodzinski, H.: Polytypism in SiC crystals. Acta Crystallogr. 7, 300 (1954).CrossRefGoogle Scholar
Yeh, C-Y., Lu, Z.W., Froyen, S., and Zunger, A.: Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086 (1992).CrossRefGoogle ScholarPubMed
Wright, A.F.: Basal-plane stacking faults and polymorphism in AlN, GaN, and InN. J. Appl. Phys. 82, 5259 (1997).CrossRefGoogle Scholar
Sebastian, M.T. and Krishna, P.: Random, Non-Random and Periodic Faulting in Crystals (Gordon and Breach, Amsterdam, Netherlands, 1994).Google Scholar
Clark, S., Segall, M., Pickard, P., Hasnip, P., Probert, M., Refson, K., and Payne, M.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005). The CASTEP code is available from Accelrys Inc.CrossRefGoogle Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Bauer, A., Kräußlich, J., Dressler, L., Kuschnerus, P., Wolf, J., Goetz, K., and Käckell, P.: High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC. Phys. Rev. B 57, 2647 (1998).CrossRefGoogle Scholar
Lambrecht, W.R.L., Limpijumnong, S., Rashkeev, S.N., and Segall, B.: Electronic band structure of SiC polytypes: A discussion of theory and experiment. Phys. Status Solidi B 202, 5 (1997).3.0.CO;2-L>CrossRefGoogle Scholar
Cheng, C., Needs, R.J., and Heine, V.: Inter-layer interactions and the origin of SiC polytypes. J. Phys. C: Solid State Phys. 21, 1049 (1988).CrossRefGoogle Scholar
Cheng, C., Heine, V., and Jones, I.L.: Silicon carbide polytypes are equilibrium structures. J. Phys. Condens. Matter 2, 5097 (1990).CrossRefGoogle Scholar
Heine, V., Cheng, C., and Needs, R.J.: The preference of silicon carbide for growth in the metastable cubic form. J. Am. Ceram. Soc. 74, 2630 (1991).CrossRefGoogle Scholar
Zoroddu, A., Bernardini, F., Ruggerone, P., and Fiorentini, V.: First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory. Phys. Rev. B 64, 045208 (2001).CrossRefGoogle Scholar
Karch, K. and Bechstedt, F.: Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces. Phys. Rev. B 56, 7404 (1997).CrossRefGoogle Scholar